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Preface

This book presents fundomental Digital Signol Processing technigues. The ronge of
opplications of Digital Signal Processing is vast. The Digital Signol Processing systems can
be implemented on general purpose processors like PC or Digital Signal Processors. The
Digital Signal Processing basically involves processing of discrete somples of doto. Becouse
of the availability of high speed computers, Digital Signal Processing (DSP) operations like
filtering, convolution, correlation, FFT etc. con be implemented fast. The DSP processors
ore ovailoble, These processors ore designed for fost implementotions of D5P operations.
Many real time applications use DSP processor bosed systems.

The first chopter infroduces DSP ond its scope of opplicotions. The second chopter
presents characteristics and properties of signals and systems. Mainly discrete time signaols
and discrete time systems are concentrated, The standard discrete fime signals, properies
of discrete time systems, lineor fime invariont systems, difference equations etc. are
presented in this chopter,

The third chopter presents z-tronsform and its properfies. The z-tronsform is used to
analyze the discrete time systems. It presents pole-zero plots, cousaolity ond stability criterio
for discrete time systems.

The fourth chopter describes various digital filter structures. The various techniques of
reglization of discrete time systems are presented in this chopter.

The digital filter design is discussed in sixth chopter. The FIR and IIR filter design is
presented in this chopter. Butterworth approximation frequency tronsformation, least squares
filter design efc is olso discussed in this chopter.

Chapter 7 presents the architecture ond features of DSP processors. The ADSP-21XX
ond ADSP-2106X are described. The briet instruction set, development tools efc. are
described in this chopter. This chopter olso presents feotures ond architecture of
TMS5320C5X series of DSP processors.

Finite wordlength effects limit the pedormance of DSP systems. These effects are
discussed in 8" chapter. Effects of coefficient quantization, A/D conversion noise, rounding
and truncation in arithmetic operagtions etc. is discussed in this chapter. The dynomic
scaling, limit cycles efc topic are also discussed.

The last thaot iz 9 chapter presents applications of DSP. Applications in DTMF
detection, speech, music, oudio, image processing are presented. Oversampling A/D, D/A
ond applications of multirate signal processing are presented.

At the end of every chopter 'C' programs are presented. The implementation logic and
results of these programs are olso discussed. The list of these programs is given in the
index.




Large number of solved examples are presented to moke concepts clear. Unsolved
exomples ore olso given at the end of every chapter along with their answers for proctice.
Attempts ore mode to moke this text os lucid os possible. Efforts are taken for consistency
in various topics. However there is o chance of typing, alignment and organizatienal errors.
Any criticism or suggestions in this regord will be highly oppreciated.

iﬁ#kﬂﬁﬂlﬁﬂgemﬁm_ -

| oam thankful to the stoff of Computer ond Electronics depariments for their
encourogement ond support. | olso thonk the Publisher ond the teom of Technical
Publicafions to publish this bogk,

Author
J. 8. Chitode

Dedicated to God
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szaefﬁr /
INTRODUGTION

Digital Signal Processing is common today. Everybody of us is directly or indirectly
related to Digital Signal Processing and its applications. The subject of Digital Signal
Processing (DSP) is mainly related to Electronics and Computer Engineering. Because of the
advancements in computers, the applications range of Digital Signal Processing 15 growing. The
signal processing takes place in amplifiers, attenuators, transformations, filters, transmission
lines, channels etc. When the signal is analog, it is called Analog Signal Processing. When the
signal is digital in nature, it is called Digiral Signal Processing. All of us know that computer
is a digital machine. Thus any type of signal processing done by the computers is basically a

Digital Signal Processing. In this chapter we will introduce the Digital Signal Processing in -

brief.
1.1 _Basic Elements of Digital Signal Processing

Fig. 1.1.1 shows the basic elements of digital signal processing system. Most of the signals
generated are analog in nature. Hence these signals are converted to digital form by the analog
to digital converter. Thus the Analog to Digital (A/D) converter generates an array of samples
and gives it to the digital signal processor. This array of samples (or sequence of samples) is
the digital equivalent of input analog signal. It is also called digital signal. The digital signal
processor performs signal processing operations like filtering, multiplication, transformation,
amplification etc. operations over this digital signal (sequence of samples) and generates
another digital signal at its output. This digital signal processor can be the high speed digital
computer or digital signal microprocessor. Such processors perform  signal processing
operations with the help of the software, which decides the type of operation. The digital
signal processors are specially designed of digital signal processing. The digital output signal
from-the digital signal processor is given to digital to analog converter. The digital to analog
(D/A) converter gets an analog equivalent of the output digital signal.

Input Chutpust

digital digital
Analag Analeg to | signal Digital signal | Digital to Analog
iornal ] diigital signal analog F——= |
wgn convertar processor converter signa

Fig. 1.1.1 Basic elements of a digital signal processing

The elementary digital signal processing discussed above can be used in number of
applications as we will see next. Any type of analog signal is converted to digital form and
processed by the digital signal processor. Some tumes the digital signal is available on the
storage media like Hard disk floppies, magnetic tapes etc. Such signal is then given to the

(1)
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digital signal processor. Hence two types of digital signal processings are possible, real time
digital signal processing and nonreal time (or offline) digital signal processing. When the
analog data is processed as it is generated, it is called real time application. For example, the
processing radar signal or speech signal by the digital signal processor is mostly real time
operation. In case of offline or nonreal time applications the digital data is stored on some
storage media. The digital signal processor then performs signal processing on this data. The
processing of satellite images after they are taken is offline type of application.

Here we have briefly introduced digital signal processing svstem. We observed that the
digital signal processing operation is basically performed on the sequence of digital data
samples. In the succeeding sections we will see the details like frequency and amplitude related
concepts of this digital data sequences.

1.2 Digital Against Analog Signal Processing

The digital signal processing offers many advantages over analog signal processing. These

advantages are discussed next,

1. Digital signal processing systems are flexible. The system can be reconfigured for
some other operation by simply changing the software program. For example, the high
pass digital filter can be changed to low pass digital filter by simply changing the
software. For this, no changes in the hardware are required. Thus djhitui signal
processing systems are highly flexible. But this type of change is not easily possible in
analog system. An analog system which performing as high pass filter, is to be totally
replaced to get lowpass filter operation.

2. Accuracy of digital signal processing systems i5 much higher than analog systems. The

- analog systems suffer from component tolerances, their breakdown etc. problems.
Hence it is difficult to attain high accuracy in analog systems. But in digital signai
processing systems, these problems are absent. The ercuracy of digital signal
processing systems is decided by resolution of A/D converter, number of bits to
represent digital data, floating/fixed point arithmetic etc. But these factors are possible
to control in digital signal processing systems (o get high accuracy.

3. The digital signals can be easily stored on the storage media such as magnelic tapes,
disks etc. Whereas the analog signals suffer from the storage problems like noise,
distortion etc. Hence digital signals are easily transportable compared to analog signals.
Thus remote processing of digital signals is possible compared to analog signals.

4. Mathematical operations can be accurately performed on digital signals compared to
analog signals, Hence mathematical signal processing algorithms can be routinely
implemented on digital signal processing systems. Whereas such algorithms are
difficult to implement on analog systems.

5. When there is large complexity in the application, then digital signal processing sytems
are cheaper compared to analog systems. The software control algorithm can be
complex, but it can be implemented accurately with less efforts.

6. The processing of the signals is completely digital in digital signal processing systems.
Hence the performance of these systems is exactly repeatable. For example the
lowpass filtering operation performed by digital filter today, will be exactly same even
after ten years. But the performance may detoriate in analog systems because of noise
effects and life of components elc.

7. The digital signal processing systems are easily upgradable since they are software
controlled. But such easy upgradation is not possible in analog systems.
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B. The digital signal processing systems use digital computeérs or standard digital signal
processors as their hardware. Almost all the applications use this as standard hardware
with minor modifications. The operation of the digital signal processing is decided
mainly by software program. Hence universal compatibility is possible in digital signal
processing systems. Whereas it is not possible in analog systems. Since a simple
analog low pass filter can be implemented by large number of ways.

9. The digital signal processing systems are small in size, more reliable and less
expensive compared to the analog systems.

Disadvantages of Digital Signal Processing Systems

Eventhough the digital signal processing systems have all the above advantages, they have
few drawbacks as follows :

1. When the analog signals have wide bandwidth, then high speed A/D converiers are
required. Such high speeds of A/D conversion are difficult to achieve for same signals.
For such applications, analog systems must be used.

2. The digital signal processing systems are expensive for small applications. Hence the
selection is done on the basis of cost complexity and performance.

- The advantages of digital communication systems ourweigh the above drawbacks.

1.3 DSP Applications

In the last section we discussed the advantages of DSP. ]"«In-w let us see what is the range
of applications of DSP. The summary of important DSP applications is presented below.

(1) DSP for Voice and Speech :

Speech recognition, voice mail, speech vocoding, speaker venfication, speech enhancement,
speech synthesis, text to speech etc.

(2) DSP for Telecommunications :

FAX, cellular phone, speaker phones, digital speech imterpolation, video conferencing,
spread spectrum communications, packet switching, echo cancellation, digital EPABXs,
ADPCM transcoders, channel multiplexing, Modems adaptive equalizers, data encryption and
line repeaters etc.

(3) DSP for Consumer Applications :
Digital audio/video/Television/Music systems, music synthesizer, Toys etc.
(4) DSP for Graphics and Imaging :

3-D and 2-D visvalization, animation, pattérn recognition, image ransmission and
compression, image enhancement, robot vision, satellite imaging for multipurposeé applications
cic.

(5) DSP for Military/Defence :

Radar processing, Sonar processing, MNavigation, missile guidance, RF modems, secure
communications.

(6) DSP for Biomedical Engineering :

X-ray storage and enhancement, ultrasound equipment, CT scanning equipments, ECG
analysis, EEG brain mappers, hearing aids, patient monitoring systems, diagnostic tools etc.
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{7) DSP for Induosirial Applications :
Robotics, CNC, secunty access and power line monitors etc.
(8) DSP for Instrumentation :

Spectrum analysis, function generation, transient analysis, digital filtering, phase locked
loops, seismic processing, pattern matching ete.

(9) DSP for Control Applications :

Servo control, robot control, laser printer control, disk control, engine control and motor
control etc.

(10) DSP for Automotive Applications :
Vibration analysis, wvoice commands, digital radio, engine control, navigation, antiskid
brakes, cellular telephones, noise cancellation, adaptive ride control etc.

Thus DSP has wide range of applications. We will be studying few applications in details
in last chapter.

1.4 Technology Review

Here we will briefly see what is the technology used for DSP. A DSP system for the
particular application can be implemented as Dedicated processor based DSP and General
purpose processor based DSP.

{i) Dedicated Processor based DSP :

In such systems the DSP processors are used. The DSF processors of Analog Devices
(ADSP 21XX series), Texas Instruments (TMS 320XXX) and Motorola (M 56XXX) are
commonly used. These DSP processors are designed specially for array operations and
multiply-accumulate operations. The DSP processors based systems are stand alone, portable,
low cost and suitable for real time applications.

(i) General purpose processor based DSP :

Such systems use general purpose micro-processors or computers. The software is
developed tw perform DSP operations on computers. For example, 'C' programs can be
developed for digital filtering, z-transform, fourier transform, FFT etc. which run on computer.
Thus utility of compufers can be increased. Such systems are flexible and easily upgradable.
The technologies of computers such as networking, storage, display, printing etc. can be
shared. But such systems are computationally ineficient. If only DSP operations are to be
performed, then it is Bgiter to Fe dedicated processor based systems.

1.5 Study of DSP

The DSP is to be first introduced through basic elements, application areas and technology.

Then the signals and their properties are to be studied which are used in DSP. Discrete

time signals are used in DSP. Hence discrete time ‘signals, their properties, generation etc,
should be studied.

Next is analysis of signals. The discrete time signals can be analyzedsin time domain as
well as frequency domain. Fourier transform and discrete fourier trgnsforms are the stangard
tools for analysis of signals. :
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DSP applications are implemented with the help of discrete time systems. For example
digital filters, correlations etc. The properties of these discrete time systems are studied.
Cascading, paralleling etc. of the discrete time systems is also studied.

z-transform is major ool for the analysis of discrete time systems. Hence computation of
z-transform, pole-zero plots system function, transfer function etc. is studied.

Computational DSP consists of FFT algorithms, design and implementation of digital
filters, estimation etc. This 15 the fundamental study for implementing any DSP application.

Lastly is to study use of DSP in few applications. The difference between dedicated and
general © purpose processor based DSP s to be studied. Few applications and their
implementations is to be studied. '

The above topics are systematically presented in this book, The concepts are supported
with illustrative ‘'C" programs. Study of DSP processors and few application case studies are
also presented at the end. The matter presented in this book is balanced for fundamental study
of theoretical and practical concepts.

Qa0



Ckﬂéfﬁr A
DISGRETE TIME SIGNALS AND SYSTEMS

2.1 Introduction

From this chapter we are starting the study of digital signal processing. The digital signal

processing involves discrete or digital signals and discrete time systems. Here we will study
vanous types of signals, systems and their properties. The important properties of systems such
as stability, causality, shift invariance etc. are discussed in this chapter. Similar properties do
exist for analog systems also. The realizability of the discrete time systems can be tested with
the help of these properties. In the signals and systems analysis we normally use standard
 signals. For analog systems, these signals are unit step, unit impulse, unit ramp etc. For
discrete time systems, these signals are unit sample sequence, unit step sequence and unit ramp
sequence. In this chapter we will also smdjr the important concept of convolution of two
sequences and its applications.

2.2 Discrete Time Signals as Array of Values

We know that all the signals in digital signal processing are discrete (or digital) in nature.
The corresponding signal is analog for analog signal processing systems. The analog signals
are also called continuous time signals.

2.2.1 Continuous Time Signals

Let us briefly look at what are continuous time and analog signals. Fig. 2.2.1 shows
variopus continuous time signals. In this figure observe that exponential as well as sinusoid are
the examples of analog signals. The special characteristic of analog signals is that they are
continuous in amplitude and defined at every time instant. For example you can calculate value
of exponential signal 'e™ "' at ¢ =01, 0001 05, 00082 ... etc. time instants. Thus it is defined at

all 'the time instants. Similarly ‘™" can take values from 1 to zero with continuous variation.

The other examples of analog signals are ECG signals, speech signals, Television signals, noise
signals etc. Almost all the signals generated from various sources in the nature are basically
analog.

Please refer Fig. 2.2.1 on next page.

Continuous time, discrete amplitude signals

Just now we were discussing about continuous time and continuous amplitude; i.e. analog
gignals. It is also possible to have the signals which have continuous time but discrete
amplitudes. Fig. 2.2.2 shows a signal which is defined at all the times but have discrete
amplitude levels. This signal can take the amplitude only in three steps but can be defined at
any time instants. Hence it is called continuous time discrete amplitude signals.

Please refer Fig. 2.2.2 on next page.

(6)
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E 3
Fig. 2.2.1 {a) The exponential signal
is analog signal. This signal has
continuous amplifude as well as
it iz defined at all the time.

o Such signal is called continuous time

& confinuous amplitude or analog signal.

1.0

Amplitude

t

1] Timm

Fig. 2.2.1 (b) The sinusoldal signal

is also analog signal. Observe that

this signal is also continuous time
1.0 continuous amplitude skgnal.

Tima

Fig. 2.2.1 Examples of continuous time signals

Digcrala
amplitude steps
E 3.0 —
g 20
1.0
t
Time

Fig. 2.2.2 An example of continuous time discrete amplitude signal. This signal is
defined at all the time instants, but takes discrete amplitude levels

2.2.2 Discrete Time Signals

The discrete time signals are obtained by time sampling of continuous time signals. Hence
the discrete time signals are defined only at sampling instants. Let us consider the exponential
signal ™' This signal can be defined at =oo< 1< o0, In this range it can be defined at any time
instant. Let us consider that this exponential signal is sampled at the time instants separated by
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period ‘T". Fig. 2.2.3 shows the continuous time signal, sampling instants and sampled or
discrete time signal. The sampling function of Fig. 2.2.3 (b) is the train of impulses.
Fig.2.2.3(c) shows the discrete time exponential function. Observe that the discrete time
exponential function is defined only at sampling instants 0, £T, + 2T, £3T, ... etc.

X)=e Fig.2.2.3 (a) An exponential function.
It is continuous in tme and ampliiude.
% \ This is confinuous tima signal.
1.0
t
Tirne
&(n) ) . .
Fig.2.2.3 (b) A sampling function.
This waveform indicates tha
{ sampling instants. Samples are
| taken at #T, #27T, =37 ......
I ‘ i ‘ ‘ ‘ l l Itis also called instantaneous sampling.
' Time l
|_
T - kESEEEE
" IL_ H ] u H | n 1] 1 n - §
Jdli ooy e P
4 x(t.}=x(nT) Fig.2.2.3 (c) A discrete time equivalent
T of exponential funclion of Fig.(a).

Observe that this function is defined
only at sampling instants.

Amplitude
.
.
]
@

b
Discrate fime

‘]ITTTT?? :
\|/

This signal is
defined only at
sampling instanis

Fig. 2.2.3 Representation of a discrete time signal
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The sampling instants are normally represented by 1, =naT. The sampled or discrete time
signal becomes,
x(tn) = x(nT) e (2.2.1)
Till now we have observed the discrete time signal in the graphical form. Let us assume
that the sampling duration T = 1 sec and
x(nT) =" for nz0
=0 for n<0

Here we are considering discrete time exponential signal only for n 2 0 for convenience.
Since we are assuming that sampling time T = 1 sec, then the above discrete time
representation becomes,

x[u]

e (2.2.2)

"
for nz0 } " (223)

-
0 for n<0

Let us evaloate x(n) forn =0, 1, 2, ... as follows :
xin) = {en.E".e'E.3'3.3'4,e'5.e"5',..,.}

= {1. 0368, 0135, 0.049, 0018, 0.0067, } - (2.2.4)
The above array shows the discrete time exponential signal. Fig. 2.2.4 shows the graphical
representation of this signal. In this figure observe that on y-axis we are plotting amplitude.
On x-axis we are plotting the index or number of the samples. Thus in this representation we
do not get any idea of sampling duration and timing parameters. Fig. 2.2.4 is just an array of
samples. Equation 2.2.4 also represents an array of samples. From this array we do not get any
information about sampling or timing. Thus the discrete time signals are basically arrays of
samples.

]

x(n)=e
1.0 @
g 2
- p
& 2
- o =
=] m
T E 2 § __________
= =1
T ¢ o .
0 1 2 3 q 5 ] n
Samples

Fig. 2.2.4 Graphical representation of discrete time exponential array of samples
Let us consider the another signal which 15 discrete time cosing wave.
.r[ﬂ} = cof (ﬂ.’! men ) e 12.2.5)
The above signal is simply an array of samples for n = 0, £1, £2, £3, +4 £5........ and
S0 On.

The following table illustrates the values of this array for various values of n.
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Table 2.2.1 : Samples of discrete time cosine wave

n x(n)=(0.3=n)
4 x(-4) = - 0.809
-3 x(-3) = - 0.93]
-2 x(=2) = - 0.309
~1 x(=1) = 0.588
0 x(0) =1

1 x(l) = 0.588
2 x(2) = - 0.309
3 x(3) = - 0.951
4 x(4) = - 0.809
5 x(3) =0

6 x(6) = 0.B09
7 x(7) = 0951

8 x(8) = 0.309
9 x(9) = - 0588
10 (10) = -1

11 x(11) = - 0.588
12 x(12) = 0309

Thus the analog to digital converter samples cosine wave at fixed rate and it generates the
sequence or array of samples as illustrated in Fig. 2.2.5. The array x(n) is then used by the
digital signal processor. The sampling frequency for the analog to digital converter or sampler
is selected depending upon the maximum frequency content of the input analog signal. Now let
us plot the discrete time cosine wave we have obtained in table 2.2.1. The plot is shown in
Fig. 2.2.6. In the figure observe that sample values are defined at n=0,£1, +2 +3,£4,... etc.

Note that x(n) cannot be defined at n =15,32,102

etc. type of values of 'n’. This is because

the sample number 'n' can be only integer. For example what do you interprete from 15
sample? Whereas 1, 2™, 3™ etc. samples are defined.
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Input AID Output
—a GONvVErer p— xin)={.. <0609, <0951, <0.309,
7 or sampler 0.588, 1, 0.588, —0.308,
\/ \ P =0.851, -0.809, ...}
Bl

Eamplmg aparation
Analog conlinuous in digital signal Discrete ime signal
tirme signal processing systems as array of samples

Fig. 2.2.5 A continuous time signal Is converted to discrete time signal
because of sampling operation in digital signal processing system

x(n) = cos (0.3 =n)

- f——eee i (1,951
0 il [, 3000

O el 0,808

Fa =8 0.309

= i .588

—4 -3 -2 2 3 43 8 10 11 h
-------- lll_iﬂ lllﬁ lll S'E“.mu
g g
ge9 748 48
Te e T 709
T T

Fig. 2.2.6 Graphical representation of discrete time cosine wave

Sometimes discrete time signals do exist from the source itself. For example if the
temperature of Pune city is recorded every year in March, then the discrete time signal resulted
is the sequence containing temperatures. In this case sample index 'n' can be the year. It is
shown in Table 2.2.2. Thus x (n) represent the sequence which contains temperatures. Note that
temperature is actually continuous time signal. But while recording it is sampled every year in
March. Hence the recorded signal becomes discrete time in nature. Thus the sampling time for
this signal is 1 year. The digital signal processing system can then determine the riseffall,
maximum/minimum etc. values of the temperatures from the sequence.

Table 2.2.2 Temperatures of Pune city taken every year in March
n = Year | x (n) = Temperature in March

1988 29.2
1989 30.1
1994) 30.4
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n = Year | x (n) = Temperature in March
1991 31.0
1992 29.7
1993 31.2
| 994 32.0
1995 32.4
1996 328
1997 31.5
1998 318
1999 32.1
2000 32.2

2.2.3 Classification of Signals

Here we will briefly see how various types of signals are classified. The classification is as
follows :

(i) Continuous and discrete time signals

(il) Continuous and discrete amplitude signals

(iti) Deterministic and random signals

{iv) Digital and analog signals

{v) Multichanne]l and multidimensional signals.

Continuous time signal : This signal can be defined at any time instant. The exponential
function and sinusoidal function shown in Fig. 2.2.1 are the examples of continuous time
signals.

Discrete time signal : This signal is defined only at sampling instants. These signals are
basically represented as array of sample values. Fig. 2.2.4 shows the discrete time signal.

Continuwous amplitude signals : The amplitude vanation is continuous in such signals. Note
that the continuous amplitude signals can be discrete or continuous in time. For example the
signals in Fig. 2.2.1 and Fig. 2.2.4 are continuous amplitude signals since they can take any
amplitude value.

Discrete amplitude signals : These signals take only discrete amplitude levels. Here note
that the discrete amplitude signals can be continuous or discrete in tume. Fig. 2.2.2 shows a
discrete amplitude signal which is continuous in time. Fig. 2.2.7 shows the signal which is
discrete in amplitude as wefl as time,

Please refer Fig. 2.2.7 on next page.

Digital signals : The signals which are discrete in time as well as amplitude are called
digital signals. All the signal representation in computers and digital signal processors use
digital signals. The digital signal can be binary (one bit), octal (3 bit) hex (4 bit), 16 bit, 32
bit or even 64 bit. The complete amplitude range of the analog signal is represented by these
bit lengths. For example, the 4 bit representation will have 2% =16 levels of amplitude. If the
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Fig. 2.2.7 A discrete amplitude and discrete time signal

analog signal has the amplitude range of 16 volts peak, then each level will be of one wvoli
This operation is illustrated in Fig. 2.2.8. In the figure observe that, the amplitude of the
analog signal at sampling instant 1 =1 is slightly above 8 volts. It 15 quantized to nearest level
of 8 volts. Similarly at n =7, the signal 15 quantized to a level of 9%, Thus the sampled
sequence becomes,

x(n)={10,864335091214,1515127,7,...}

Here since the amplitude as well as time is discrete, it is called digital signal. This signal
can be represented to binary form by simply writing each sample in binary ie.,

x(n) = {lﬂ]ﬂ.lﬂm. 0110, 0100, 001 1, 001 I.ﬂlDLlDDLllEI{I'....}

The above sequence of samples is binary in natwre. We will discuss more about sampling
and guantization in section 1.9,

Please refer Fig. 2.2.8 on next page.

Analog signals : The signals which are continuous in time as well as amplitude are called
analog signals. For example, the exponential function and sinusoidal function shown in
Fig. 2.2.1 are examples of analog signals.

Deterministic signals : A signal which 1s cump]ct:ly described by the mathematical model
is called deterministic signal. The value of the deterministic signal can be evaluated at any
time (past, present and future) without uncertainty. For example, the sinusoidal signal.

x(t) = A cos wt

is the deterministic signal since it's value can be calculated at any time precisely.

Random signals : The signals which cannot be described by the mathematical model are
called random signals. For example the noise signal or speech signals are random signals. The
random signals can be described with the help of their statistical properties.

Multichannel signals @ When different signals are recorded from the same source they are
called multichannel signals. For example, ECG signal can be recorded in 3 leads or 12 leads
for the same person. This results in 3 channel or 12 channel ECG signal. The multichannel
signals are useful in studying correlation properties of the source,

Multidimensional signals : When the amplitude of the signal depends upon two or more
independent variables, it is called multidimensional signal. For example, the intensity or
brightness at any point in the picture or image is the function of its x and y position. Hence it
becomes two dimensional signal. The intensity of any point on the TV screen is the fum:l.ﬁn
of its x and v pagitions as well as nme. Hence it becomes three dimensional signal.

L (E



Digital Signal Processing 14 Discrete Time Signals & Systems

amplifude

o — Discrete

k.
.

13
12
1

10

m W

%

chapter.

levels
=+— Binary
lewels

}

1M

1110
1101

1100
1011

1010
1001
1000
om

ona
010
0100
0o
0010

0001

01 2 3 4 5 & T 8 8 10 1 12 13 4. n

Fig. 2.2.8 Sampling and quantization to get digital signal

We will see more detailed classification of discrete time signals specifically further in this

2.2.4 Frequency Concept in Discrete Time Signals

In this subsection let us see how frequencies for discrete time signal are represented. We
will also see the relationship between sampling frequency, continuous time frequency and
discrete time frequency. Let us consider the continuous time cosine wave, which can be
expressed as,
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X (1) = Acos (Qi+8),-w<rcw .. (2.2.6)
Here x, (r) represents analog signal.
A is the amplitude of sinusoid in volts.
and £ 15 the frequency of analog sinusoid in radians per second.
@ is the phase in radians.
And Q) = 2aF (227

Here F is the frequency in cycles per second or Hertz. Hence equation 2.2.6 can be
written also as.

x,(r) =Acos(2nFr+8),-m<r<m w (2.2.8)
Fig. 2.2.9 shows the cosine wave represented by the signal x_ (r)

Kgll} = A cos (2nFL + 8)
ANA
/ \Z f |

Fig. 2.2.9 An analeg cosine wave of amplitude A,
frequency F cycles/sec and phase shift 0 radians
Since the cosine wave of equation 2.2.8 is periodic with period T, we know that any
periodic signal satisfies following property :
x (1) =x,(1+7,) v (229)
This means the signal repeats after the period T,. As frequency T is increased or
decreased, we get cosine waves of different frequencies in equation 2.2.8. That is all the
frequency waveforms will be distinct from each other. For the analog cosine wave of
Fig. 2.29, it is possible to increase frequency F upto infinity. Similarly frequency can be
reduced to zero, Hence the frequency 'F' satisfies the relation : 0 £ F £ o,
Negative frequencies in analog signals :
Sometimes we come across negative frequencies in some mathematical operations,
Consider the standard euler's identfy, -
e/* =cos¢+jsing } . (2.2.10)
and g i% =cosd—jsing
We can write equation 2.2.6 in the form of complex exponential functions using above
relation. Consider the following expression,

%E_ﬂ:ﬂ1+ﬂ] +%E—;‘{m+ﬂl - ‘%[cm (Qr+8) +jsin (Qr +0)]

+%[r:m{ﬂt+ﬂ]—jn’n (ﬂr+ﬂ)]
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= A cos (£21+8)
In the above result observe that the RHS is equatiun 2.2.6. Thus,

x, (1) = Ams[:ﬂr+ﬂ)—— i@ee®) (A @8 o901
Positive 2 Negaiive

frequency  frequency

Thus the cosine wave 18 represent in lerms of two equal amplitude complex conjugate
exponential functions. The first complex exponential function has positive frequency and
second function has negative frequency. Here note that negative frequency as such is not
possible in practice. The positive/negative frequencies representation of the signals as in
equation 2.2.11 above, is extremely useful in mathematical analysis as we will see in
succeeding chapters.

Discrete time signal representation :

Till now we have revised the frequency concepts for analog signals. Now let us see how
these concepts can be applied to discrete time signals. The discrete time cosine wave can be
expressed as,

x(m) =Am.r{mr:+ﬂ).—mfnf:m we (22,11 (a))

Here x (n) is the sequence of samples of discréle time cosine wave.

n 15 the index of the samples.
w is the frequency in radians per sample.
8 is the phase in radians.

and A is the amplitude of cosine wave.

The frequency w is expressed as radians/samples. Here samples has no unit. It is just the
index of the samples. Hence the frequency is also expressed in radians only. Thus frequency
in radiansfsample and frequency in' radians have the same meaning. Remember that for
continuous time signals, the frequency is represented in radians/sec. Since @ is the angular
frequency it can bé expressed as,

wm = 2nf e (2.2.12)

Here f is the frequency in cycles per sample. Since again samples has no unit, the
frequency f can also be expressed in cycles only. With the help of above result equation
2.2.11 can be written as

. x(n) = A cos (2nfn +8),-0<n<w . (2.2.13)
Ex. 2.2.1 Sketch the discrete time sinusoidal signal which is given as,
x(n) = A cos(wn+8) : e (2.2.14)
for ) w = E radians / sample and
0 = E radians.

Sol. : The given signal x'(n) is the discrete ime cosine wave of frequency ' and phase shift
of "@'. Basically the given aquatiﬂn of x(n) is same as that in eguation 2.2.1. We know that
the period of the repeating signal is 2Zn radians. Hence let us calculate how many samples of
x (m) are present in one p:nnd of 2rx radians (i.e. one cycle). The given "o is,
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- =, 0 . (2.2.15)

Here observe that there are 12 samples of x(n) in one period (or cycle) of 2n radians.

Now let us calculate the number of samples for the phase shift ﬂfH=§ radians. We know that

there are 12 samples of x (n) in one cycle or period of 2r radians. Hence number of samples
in -;5 radians will be,

b1
2% —
Phase shift in samples =

n

= 2 samples.
Here the phase shift is positive (+8), hence the waveform of x (n) will be phase advanced
by 2 samples with respect to 0™ sample.
Calculation of sample values of x (n) :
Till now we have discussed about number of samples in one cycle and phase shift of
x (m) This can be verified by actually calculating samples of x (n). We have,
x(n) = A cos (on+8)

Huﬁngm:-;fnnd'ﬂ=;—rin above equation we get,

x(m) =ﬂm;[£n+—mn]
6 3

Now let us calculate x (n) for various values of n. The calculations are shown in Table
2.2.3.

Table 2.2.3 : Calculation of discrete time cosine wave

x(m) _ T R
rxinl=A cﬂ;[in +E]
x(-6) =(1.5004
x(=5) 0.0004
x(—4) 05004
x(-3) 08664
x(-2) LO00A
x(=1) 08664
x(0) 05004
x (1) 0.0004
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x(m) :[n}:ﬂm[ﬁn+ﬁ]
6 3
x(2) (5004
x(3) (8664
x{4) - LO00A
x(5) {18664
x(6) ' 05004
x(7) 0.0004
x(8) 05004
x(9) 08664
x(10) LOOOA
x(11) No564
x(12) 05004
x(13) 0.0004
x(14) 05004
x(15) (8664

Fig. 2.2.10 shows the sketch of discrete time cosine wave based on the values calculated
in above table.

::n}-Am{-Em-'%J

One cycla of
g 12 S
2 samples ——.* s or Peripd = 12 samplas

Fig. 22.10 A discrete time consine wave of example 2.2.1
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It is clear from the Fig. 2.2.10 that one cycle of x(n) has 12 samples. Similarly the
waveform is phase leading by 2 samples. This is same as we have discussed at the beginning
of the solution. We know that,

w = 2nf
Hence f=2
n

Here w is expressed in md;::: and 2n is basically period of one cycle. Hence 2n can be
sam

called as means 2x radians per cycle. Hence unit of '/ becomes,

c
f= @ radians / sample
2m radians/ cycle

=2 cycles / sample
in

Thus the unit of ' ' as cycles per samples which we have mentioned earlier. Putting value
ufng in above equation we get,

w6

f=*ﬂ:*

I = ﬁ cycles / sample
Thus the frequency of discrete time cosine wave of Fig. 2.2.10 is é cycles per sample.
Since samples do not have any unit, the frequency " f' can be called simply m% cycles also.

To calculate period ‘N' of x(n) :
Now let us calculate period 'N° of the discrete time signal. i.e.,
* = . (22.16)

In the above equation puiting the value ﬂf-éwﬂ:ﬂmﬂﬁﬁ,

Period N =;= 12 samples / cycles
lc}'cfﬂ

12 sample

Thus the period is 12 samples per cycle as indicated in Fig. 2.2.10.
" Ilild:ﬂlndi'lml:r.-ml:il:quﬁmul!ﬂ.ulaipiilp:riudi:uﬂrilf--:?H:tl:l:udl!‘lm:i]tpﬂ.]’“l

hpmm:.:.lsmmrma.umy-;.}. For simplicity this relation is given.
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Ex. 222 Show that the discrete time sinusoidal signal is periodic only if its frequency (fy)
can be expressed as the ratio of two integers ie. if ' f,;' is rational.
Sol. : The discrete time signal is periodic only if,
x(n+N) =x(n) for all n (2217
Here 'N' is the period of x (n) in samples. Now let us consider the cosine wave signal,
x(n) = Acos(2nfyn+8)
Hence x(n + N) in the above equation becomes,
(N +n) = A cos [hf“{N +n]n+B]
= A cos [2nfy N +2nfy n+0]
For periodicity x (N +n)=x (n) That is,
A cos [2nfy N +2nfy n +8] = A cos (2nfy n +8)
The above equation is satisfied only if, 2nf N is an integer multiple of 2 ie.,

dmfg N =2nk
Here k is some integer. Solving for f;, above equation becomes,
k
=_ o (2.2.18)
fo N

This result shows that the discrete time sinusoidal signal is periodic only if its frequency
Jo is rational. For example,

: 30 1
if ==
fo 02
Here k=1 and, N =2 is the fundamental pericd. Thus f; is expressed as the ratio of
k and N such that no further simplification nf% is possible.

The discussion of the above example can be continued further and we can state that when
the frequencies of discrete time sinusoids are separated by integer multiple of 2x, they cannot
be distinguished from each other. For example let x; (n) = cos {mﬂ n -|-E').

Let x5 (n) have frequency of @y + 2n, then we can write,

x5 (n) = cm'[{mn +11'r:|n+'ﬂ]
= cos [wg n +2nn +8)
= oS [munq-ﬂl] =x;(n)

Thus x; (r)and x5 (n) become same.

Ex. 2.2.3 Consider the following sinusoidal signal,
x(n) = cos {mn n}
Sketch the discrete time sequence of x (n) for following frequencies :
(i) wg =0 (ii) oy =§, (iii) wg =5 (iv) oy =12': and (v) ®g = radians.
Sol. : The values of samples can be obtained by values of @, in the equation
x (n)=cos (wy n). Table 2.2.4 shows the sample values of x (n) for various values of wg.
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Table 2.2.4 : Sample values of x (n) = cos (wg n) for various values of uy

" g =0 'E';’l’; ":’;'I=E %=E P =%
x(=15) 1.000 0.924 0.707 0.000 - 1.000
x(-14) 1.000 0.707 0.000 - 1000 1.000
x(-13) 1.000 0.383 - 0.707 - 0.000 - 1000
x(=12) 1.000 0.000 1.000 1.000 1.000
x(-11) 1.000 - 0.383 - 0.707 0.000 - 1.000
x(-10) 1.000 - 0.707 0.000 - 1.000 1.000
x(-9) 1.000 - 0.924 0.707 - 0.000 - 1000
x(—8) 1.000 - 1.000 1000 1.000 1.000
x(=T) 1.000 - 0.924 0.707 0.000 - 1.000
x(—6) 1.000 - 0.707 0.000 - 1.000 1.000
x(~-5) 1.000 - 0.383 - 0.707 - 0.000 - 1.000
x(~4) 1.000 - 0.0D0 - 1.000 1.000 1.000
x(=3) 1.000 (0.383 - 0.707 0.000 - 1.000
x(=2) 1.000 0.707 - 0.000 = 1.000 1.000
x(=1) 1.000 0.924 0.707 = 0.000 - 1.000
x(0) 1.000 1.000 1.000 1.000 1.000
x(1) 1.000 0.924 0.707 - 0,000 - 1.000
x(2) 1.000 0.707 - 0.000 - 1.000 1.000
x(3) 1.000 0.383 - 0.707 0.000 - 1.000
x(4) 1.000 - 0,000 - 1.000 1.000 1.000
x(5) 1.000 - 0.383 - 0.707 - 0.000 - 1.000
x(6) 1.000 - 0.707 0.000 - 1.000 1.000
x(7) 1.000 - 0,924 0.707 0.000 = 1.000
x(8) 1.000 - 1.000 1.000 1.000 1.000
x(9) 1.000 - 0924 0.707 - 0.000 - 1.000
x(10) 1.000 - 0.707 - 0.000 - 1.000 1.000
x(11) 1.000 - 0L.383 - 0.707 0.000 - 1.000
x(12) 1,000 0.000 - 1.000 1.000 1000
x(13) 1.000 0.383 - 0.707 - 0.000 - 1.000
x(14) 1.000 0.707 0.000 - 1.000 1.000

(0.924

x(13)

1.000

0.707

0.000

- 1.000
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Fig. 2.2.11 shows the sketch of x(n) for various frequencies of w; based on the values
calculated in the above table.

_'gj_'gj_‘njjrmyyﬁnrTTTITmTTTTm
(b). ap = § x(n)
v

e, o1l T%e, of1..

STTTIT® F ﬁ&lll$a
(c). wg =F x(n)
::&a apm__._.
_?_6-5-4-3 —1'01 345 ! .

(d). Eﬁ? xini) Period = I s:Ir?:d-H
" =t

-157 13T-11T-!ET-TT T T |

]
Pl e

AEARKN
TTTT

i

Fig. 2.2.11 Skeiches of discrete time cosine wave for various values of frequency.

Fig. 2.2.11 (a) shows sketch for frequency wy =0, l.e. DC signal
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Now let us interpret the sketches of x (n) for various frequencies. The wy =0 is actually
de signal. Hence the value of x(n)=1 for all the sample values. This sketch is shown in

Fig.2.2.11(a). The next frequency is wy =§. It can be rearranged as,
i In

2x=8 16

Thus there are 16 samples in one cycle. This sketch is indicated in Fig. 2.2.11 (b). We
have f, related to wy as,

L) —iﬂfn
wy =S8 :
fo —2—:::2— putting value of wy -E
1
fo =16 cycles per sample
Hm:pmud:%:ﬁﬂﬁumplmﬂahuminﬁg. 22.11 (b)
0

Fig. 2.2.11 (c) shows the sketch of discrete time cosine wave for g =E radians per

:aamphhndf=a;-cyc|=3pﬂamnp1e for this signal. As shown the period N =8 samples. It can

be calculated from frequency ' f* also. ie.,

kE 1. .
=—=—je Perind N=§ .
I ™ EII.‘- samples

This indicates that as frequency increases, the period reduces.
Further, Fig. 2.2.11 (d) shows the sketch of discrete time cosine wave for wy =§. Observe

that the period is further reduced. There are only four samples of the cosine wave in one
period of cycle.

Fig. 2.2.11 (e) shows the sketch of the waveform for wy = = radians / sample. Hen:f:%

cycles per sample. The period N = 2 samples. This means in one cycle only two samples of the
waveform are used. This also shows that the frequency w; cannot be increased more than '«
since the waveform will not be represented. Observe in Fig. 2.2.11 (e) that it is not possible to
reduce the period less two samples, since alternate samples are positive and negative.

Conclusion :
Based on the discussion of above example we can conclude that ; for the discrete time

sinusoids, the maximum frequency is ®=x radians / sample urf=~11- cycles / sample. It can

also be shown easily that maximum negative value of "o will be '—n' and that of ' f* will be
n ll

2"
Just now we have established that frequency range in which sinusoids can be represented
is limited to —x to = Now let us consider that we have the signal,



Digital Signal Processing 24 Discrete Time Signals & Systems

xy(n) = cos (w; n) n<wy <In o (2.2.19)
Here we have considered that the frequency w; is between m to 2r Let us select another
sinusoid,
x3(m) = cos(wy n) . (2.2.20)
Such that wy =2n-w;. Since nSw; £ 2n the range of wy; will be 0Sw, < Pulting
w; =2m—w,; in the above equation we get,
x5 (n) = cos {h-m,)n]
cos [ 2nn —wy n}
cos (—my n)
cos (@ n)
= x; (n) - (2.2.21)
Thus x5 (n) is same as x; (n). The frequency of x; (n) is in the range 0w, s n We
have seen that frequencies in this range are represented. But @, has the range of a<m; <Ixn
which is outside of the maximum range that can be represented. Equation 2.2.21 shows that
x3 (n) becomes same as x;(n). In this effect, high frequency (> ) takes the form of low
frequency (< nt). This effect is called aliasing. Here w, is called alias of w;. We will see more
about the concept of aliasing further in the section on sampling of signals.

Ex. 2.24 A discrere time signal x (n) is defined as,

[}

x(n) -]-I-% for-3<n<s-1
x(n) =1 for0sn<3
x(n) =0 elsewhere

Determine its values and sketch the signal x (n) [Dec - 98]

Snl.zx{u]l-l+% for ~3sn<-1:

. =—3==r.1:{n]=1+-_3—3=ﬂ

-2 1
n --1~_-:nu1r|[.-'|}|=1+T=i
-1 _2
n =—l:‘.a-.:{n}=l+?=5
x{n)=1 for 0ZR<3:
x(0) =1
x(l) =1
x(2) =1
x(3) =1

x(n) =0 elsewhere :

ie. form=-4,-5-6,...etc x(n)=0
and for nz 4,5, 6,...etc x(n)=0

Hence the sequence x (n) becomes,



Digital Signal Processing 25 Discrete Time Signals & Systems

;{n}={...ﬂ.l.E.LLLL{1...}
3 3 1
Fig. 2.2.12 shows the sketch of the above signal.
x(n)
L
R

LA T

[

—i O 2 o— N

o
1 2 3 4 5

2
T
-1 0

Fig. 2.2.12 Skeich of the sequence x (n) of example 2.2.4

Ex. 2.2.5 Few discrete time sequences are given below
nn

(i) cos (001 mn) (ii) cos(Imn) (i) sin(3n) {(iv) ms(%]ms [T]

Determine whether they are periodic or nonperiodic. If the sequence is periodic,
determine its fundamental period.
Sol. : In example 2.2.2 we have seen that, the discrete time signal is periodic if its frequency
'f" can be expressed as ratio of two integers. i.e.,

f= i— from equation 2.2.18

(i) cos(0.01 xn):
Here @ =00lr

Since w=2nf, we havcf-i

f = 001 =

Zn
1
—_— cles sample
200 Y per P

Here k=land N =200. Thus 'f" is expressed as ratio of two integers. Hence given
sequence is-pcriudi:,Hmpaﬁﬂﬂzlmmmplmmmmﬂnﬂnihmusmly when k =1

Earlier we have considered all signals which have k=1 Hence we have used the relation
N =£. But this is not always true.
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(ii) cos 3Imn :

Here w=3x
1]

We have f==—
2n
in

f =322

We know lhntf=% and if kand N are integers, then signal is periodic with perod "N
Thus the given signal is periodic with period N =2 samples.

(iii) sin (3n)
Here w@=3
We have I -2
im
_ 3
f= 2

Here k =3and N =2 n, which is not an integer. Thus '/ cannot be expressed as the ratio
of two integeis. Therefore this signal is nonperiodic.

(iv) m[%)ms[%ﬁ]:

Here we can wrile given scquence as,
Loy EI:I'l Cos mz

and W == Wy ==

Here k; =land Ny =16 m which is not an integer. Hence f; is not the ratio of two integers.
Therefore cos [%] is nonperiodic.

]
N =22
ow fa T x

LiL.



Digital Signal Processing 27 Discrete Time Signals & Systems

'f5" is the ratio of two integers with N, =16 Hence ms[g] is periodic. The given signall

is thus the uct of nonperiodic signal and periodic signal. Hence the product signal
m[%]cm %]i&nm;mriudi:.

2.3 Standard Discrete Time Signals (Sequences)

In this section we will consider some of the standard discrete time signals and their
representation. These signals are discrete time sinusoids, unit sample sequence, unit step signal,
unit ramp signal and exponential signal etc. These standard signals are extremely useful in the
analysis of discrete time systems. We have discussed discrete time sinusoids such as
x{n)=A cos(wg n) or x{n)=A sin(wy n) in detail in last section. Hence we will see the
representation of other standard signals in this section.

2.3.1 Unit Sample Soqmm

The unit sample sequence is represented by &(n). It is very much similar to the standard
unit impulse signal & (). The unit sample sequence & (n) is defined as,

G(n) =1 for n=0 } 231)
=0 for n=0 T
In the sequence form it can be represented as,
E{n]n{.,.,ll 00LGO ﬂ} 232)
- . (2.3,

In the above sequence 'T* this arrow represents ot sample. The above sequence can also
be represented simply as,

§(n) ={1} - (233)
Fig. 2.3.1 shows the sketch of unit sample sequence.
&(n)
[ ]
o1
o O o O——=—
4 -3 2 1 P 1 2 3 4 Samples

Fig. 2.3.1 Graphical representation of unit sample sequence

2.3.2 Unit Step Sequence

The unit step sequence is denoted by u (n) and all its samples have a value of 'l' for n 2 0
Le.,
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e (2.3.4)

uin) = for n20
=0 for n<0

Thus the unit step sequence of ten samples can be wrilten as,
w(m)={0, 0, LLLLLLLLILI}
.T

Here the '™ arrow indicates 0™ sample. Or it can also be written as,
uin) = {LLLLL1L1L1L1}
As shown in the above representation an “t" arrow is absent. In such representation, the

first sample is considered as the 0™ sample. Fig. 2.3.2 shows the sketch the unit step

sequence.
uin)

.

r
5 4 3 2 -1 0 14 7 8 Samples

Fig. 2.3.2 Graphical representation of the unit step signal
The unit step sequence is similar to standard unit step signal u (r) used for continuous time
systems. Hence unit step sequence can also be called as discrete time representation of unit
step signal.

2.3.3 Unit Ramp Sequence

The unit ramp sequence is denoted by u, (n). lis value increases with the sample number
'n' linearly. It is defined as,

up(my=n  for n20 } - (235)

=0 for n<0

The sequence for a unit ramp of 10 samples can be written as follows.

u, (n) ={ﬂ.llliiﬁ.?.ﬂ.i lﬂ}
Fig. 2.3.3 shows the sketch of unit ramp sequence.

un)
o
9

L Samples
Fig. 2.3.3 A sketch of unit ramp sequence

= kR S e R W
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The unit ramp sequence is similar to the unit ramp signal (7). In the above figure observe
that the amplitudes of the samples increase linearly with the number of the sample.

2.3.4 Exponential Sequence
The exponential sequence can be represented as,
x{n) =a . (2.3.6)
Fig. 234 (a) shows the plot of a" for O< a<l Observe that it is the decaying signal. If

a>1, then x(n) becomes the nsing exponential sequence. The exponential sequence can be real
or complex valued. If ' & is coinplex valued, then it can be represented as,

a=rel - (2.3.7)
xin)
9
a1
®
d=a=<1
i ] T T T ? f?eeg in
0 Samples
Fig. 2.3.4 (a) A sketch of decaying exponential sequence
x(n)
1 Q
o
$ a»1
f D ’ nE.”‘IHI

Fig. 2.3.4 (b) A sketch of rising exponential sequence
Here "r' is the magnitude of 'a' and "® is the angle of "a&'. Hence the sequence x(n) of
equation 2.3.6 becomes,
x(n) =a"

=[r .l.'J":']Jr Since a = re’
=r" .. (23.8)

Here let us use euler's identity ; e® =¢os ¢ + j sin¢. Hence above equation becomes,
xin) =r" [m.s (Bn) + j sin {an)]

=r" cos (Bn)+ jr" sin(Bn)
Thus each sample of sequence x(n) has real part and imaginary part. i.e.
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Real part of x(n) = Xg{(n)=r" cos (6n) } . 239
and Imaginary partof x(n) = x;(n)=r" sin (On)
Similarly from equation 2.3.8 we can write magnitude and phase of x(n) as,
Magnitude of x(n) = |x(n)}=A(n)=r" - (2.3.10)
Phase of x(n) = £ x(n)=é(n)=0n - (2.3.11)

The above two results can also be obtained from equation 2.3.9.

Ex. 2.3.1 Prove the following
fi) 8(n)=u(n)-uin-=1)

{ii) win)= i 5(k)

k=—-m
(iii) win)= fﬁ{n—ﬂ
k=10
Sol. : (i) S(n)=u(n)-uin-1)
We know that
1 for nz20
uin) =
{D for m<O
And w(n-1) ={1 for m21
0 for m<l
0 for nm2lie n>0
Hence, uln)-uin=0) =41 for n=0
0 for i<

The above equation is nothing but &(n). ie.,
uin)-uin-1) g d(n)=1 for n=0
=0 for n=0

@ um= 3 5(k):

k=-m
i 80k) -{ﬂ for n<0
f = I for n20

The right hand side of above equation is unit sample sequence u (n). Hence the equation is
proved. .
(i) w(m)= 3 S(n-k):
k=1

0 for n<0
d(n-k) =
tiﬂ (% ) {I- for nz0

The right hand side of above equation is unit sample sequence u(n). Hence the given
equation is proved.



Digital Signal Processing 31 Discrete Time Signals & Systems
2.4 Classification of Discrete Time Signals

Earlier we have seen the general classification of signals. The discrete time signals are one
of them. Thus the discrete time signals are classified as follows :

(i) Energy signals and power signals

(ii) Periodic signals and nonpenodic signals

(iii) Even and odd signals

(iv) Multichannel and multidimensional signals.

(v) Deterministic and random signals.

Actually all the above types of signals exists in continuous time signals also. Let us define
briefly the above types of signals.

2.4.1 Energy Signals and Power Signals
The energy of the discrete time signal x(n) 15 denoted by E. It is given as,
Energy, E = i i:-:l,'nf e (2.4:1)

[l =]

Thus the energy of the signa.] 15 equal to summation of magnitude squared values of x{n}
Observe that the summation is carried out over all the samples of x(n). The mgna] x(m) is
called energy signal if its energy is finite i.e.,

xin) is energy signal if, O< E<ax o (2.4.2)
The average power of the discrete time signal x(n) is denoted by ' P, It is given as,
Power, P = lim 1 f |_|r|';r|}|Fi . (2.4.3)

N-w (AN +1) Ty

Thus in the above equation, it is desirable that ' N' should be very large. The signal x(n)
is called power signal if its power is finite ie.,
x(n) is power signal if, O< P<w e (243 (2))
There are few signals, which are neither energy signals nor power signals.

2.4.2 Periodic Signals and Non-periodic Signals

The signal x(n) is said to be periodic if,
x(n+N) =x(n) for all n e (2.4.4)
Here 'N' is the period of the signal. If the signal x(n) do not satisfy above property for all
values of n, then the signal is said to be non periodic. In example 2.2.2, we have seen carlier
that a discrete time sinusoid is periodic for all values of n only if its frequency f; is rational.
That is if the frequency f, can be expressed as the ratio of,

k
fo = ¥ e (2.4.5)

Here N is the fundamental period and 'k’ is some integer.
2.43 Even and Odd Signals or Symmetric and Antisymmetric Signals

The signal x(n) is said to be even or symmetric if,
x(-n) =x(n) . (2.4.6)
For example consider the signal shown in Fig. 2.4.1.
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x(n)

LU

-8 -7 -6

S—0——0—L0—]

7 8 9 10 Samples

Fig. 2.4.1 Sketch of an even or symmetric signal
In this figure observe that,
x(=1) = x(l)
x(=2) = x(2)
x(=3) = x(3)

and x(-n) = x(n)
Hence it is even or symmetric signal.
The signal x(n) is called odd or antisymmetric if

x(=n) = =x(n) - (24.7)
For example consider the signal shown in Fig. 2.4.2.

x(n)

L o

s ?

4

3

2
931654321'—1] [

i Ny
lw_"tﬂalﬁﬂ?&ﬂ Samples

& &b b Lo

e

L

Fig. 24.2 A skeich of odd or antisymmetric signal
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In the Fig. 2.4.2 it is clear that
x(=1) = —x(1)
2(=2) = —x(2)

and x(—-n) = -x(n)
Hence it is odd or antisymmetric signal.
Earlier we have seen multidimensional and multichannel signals. We have also seen

deterministic and random signals in section 2.2.3. The same discussion applies to discrete time
signals also. ] ;

2.5 Discrete Time Systems

Till now we were discussing about
discrete time signals and their classification.

In this section we will discuss about x(n) - .

: - . ! Discrete time yin)
discrete time systems. The discrete time |n|:|u1—i|;|l syslon _Eripul-m'
system is a device or algorithm that axcitation response

performs some prescribed operation on the
discrete time signal. Thus the discrete time
system has an input or excitation and the Fig. 2.5.1 A discrete time system
output or response as shown in Fig. 2.5.1.
As shown in the figure, w(n) is the response to the excitabbion x(n). The input output
relationship for a discrete time system is represented as,
y(n) = T[.rfn}] : . (251
or x(n) —= y(n) - (252)
Here 'T" represents transformation operation. This transformation operation depends upon

the characteristics of the discrete time system. Let us consider the following example which
illustrates the data processing in discrete time system.

Ex. 2.5.1 Consider the discrete time system of Fig. 2.5.1, is excited by following sequence,
x(n) =1 for 0=n<3 }

- (2.5.3)
= elsewhere

Find out the response v (n) if x (n) and y (n) are related by following relations :

fi) vi(n)=x(-n)

(i) y(n)=x{n-1})

fili) y(n)=x(n+ 1)

fivly(n)=x{n-I})+xin=+])

(v} y(n) = 2x (n) v
Sol. : Since this is the first example on digital signal processing in a discrete time system we
will study it graphically as well as analytically,

() y(n) =x(-n) : Folding operation : !

This is basically folding of the sequence. Let us sketch the sequence x(n). It is shown in
Fig. 2.5.2.
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x(n) .
11111
-—-—a—-—a—o—a—o—o—] n
6 54 -3 -2-10 1 2 3 4 5 6 7 Samples

Fig. 2.5.2 Graphical representation of input sequence x(n)
Thus it is clear from above figure that x(n)=1lfor 0sn<3 x(n)=0for n=4,56... =
Similarly x (n)=0forn=-1,-2,-3,-4,... % Now we have y(n)=x(-n). Hence,

n=0= yi0) = x(0)=1

n=l= vil) =x(-D=0

n=21= yvi2) =x(-2)=0

n=3= ¥(3) =x(-3)=0 .. and so on.
Similarly

n=-l= y(=1) = x[{-1)]=x(1)=1

n=-2= ¥vi-2) =x(2)=1

A==3= ¥{=3) =x(3)=1

n=—dg=> ¥i—4) =x(4)=0

n==-5= y(=-5) =x(5)=0 ... and so on.
The sketch of y(n) based on above calculations is shown in Fig. 2.5.3 below.

L]

y(n) = x{=n)
1 01 1
“1
iy S———0—0—=
6 -5 4 -3 -2-1 0 1 2 3 4 5 Samples

Fig. 2.5.3 Folding or reflection operation of the sequence

Now compare the sequence x(-—n) shown in Fig. 2.5.3 with the sequence x{n) in
Fig. 2.5.2. It is clear that sequence x({—n) 15 the mirmor image of x(n) at n=0. It 15 also
called folding or reflection of x(n) at n =0 Thus x(-n) is obtained by folding x (n) with
respect 1o time origin 1 =0 Thus we can also say that y(n) is obtained by just folding x (n)
o get,

¥in) =x(-n)

The folding of sequences is required in convolution and FFT algorithms as we will see

next.
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(ii) y(m)=x(n-1) : Delay operation :

This indicates delaying the sequence. The sketch and values of x(n) are given in
Fig. 2.5.2. Let us use these values to calculate y (n) as follows.

n=0= y(0) =x(0-1)=x(-1)=0

n=l= yil) =x(l-1)=x(0)=1

n=21= yi(2) =x(2=l)=x (1) =1

n=3= w3 =x(3==x(2)=1

n=4= yid4) =x(d=1)=x(3)=1

H=3= ¥(5) =x(5=1)=x(4)=0

n=6= y(6) = x(6-1)=x(5)=0 ... and 5o on.

Similarly for negative values of n,
n=-1= y(-1) s x{-1-1})=x(-2)=0
n=-2= y(-2) =x(-2-D=x{(-3=0
n==3= ¥(=3) =x({=3-1)=x(-4)=0 .. and so on.
Based on the above values, Fig. 2.54 (b) shows the sequence y(n). Fig. 2.5.4 (a) shows
x (n) for reference,

x(n)

(@) ".’I
—O—O—Oo—0— [
5 4 -3-2-10 1 2 3

y(n) = x(n-1)

(&) I
p

b
-4 -3 21 ﬂl 1 2 3

i

5 8 7 Samples
Fig. 2.5.4 (a) The sketch of (b) Sketch of sequence y (n).
sequence x (n) It is delayed by one sample.

On comparing x (n)and y(n) shown in above figure, it is clear that y(n) is delayed by
one sample. Thus delay of one sample indicates shifting the sequence night by one sample.
Similarly if,

yin) =x(n-k)
then y(n) can be obtained by shifting x (n) to rizht by 'k’ samples.
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(iif} y(m)=x(n +1) : Advancing operation :

This indicates advancing the sequence. We have the sketch and values of x(n) as shown
in Fig. 2.5.4 (a). Let us calculate y(n)=x (n +1) for various values of n as follows :

n=0= ¥y(0) =x(0+1)=x(1)=1
n=1= y(l) =x(1+)=x(2)=1
n=2= ¥(2) =x(2+1)=x(3) =1
n=3= ¥(3) =x(3+1)=x({4)=0
n=4= ¥(4) =x(4+1)=x(5)=0 .. and s0 on.

Similarly for negative values of 'n' we have,
n=-=]= (=1 =x(=1+)=x(0) =1
n==-21= ¥(=2) =x(-2+)=x(-1)=0
n=-31= ¥(=3) =x(-3+l)=x(-2)=0
n==4=  y(-4) =x(=4+1)=x(-3)=0 .. and so on.
The sketch of x (n)and v(n) together is shown in Fig. 2.5.5. (a) and (b) based on above
values.

x{n)

-5 4 =3 =21 0} 1

y(n) = x(n+1)
14 o o
(b)
n
54 -3-2-10 1 2 3 45 6 7 Samples
Fig. 2.5.5 (a) The sketch of (b) Sketch of sequence y (n).
sequence x (n) It is advanced by one sample.

On comparing the above two sequences it is clear that sequence y(n) is time advanced by
one sample with respect to sequence x (n). Hence advancing sequence by one sample indicates
the shift of sequence towards left by one sample. Similarly if,

yin) =x(n+k)

then y(n) will be obtained by shifting x (n) towards left by 'k’ samples.

(iv) y(n)=x(n-1)+x(n+1) : Adding operation :

This is the operation of adding two sequences. Let us evaluate v{n) by using the available
sequence x (n) of Fig. 2.5.5 (a).
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n=0= vi0) = x(0-D+n(0+D=x{-D+x{l)=1
n=1= y() = x(1-1+x(1+)=x(0)+x(2)=2
n=2= yi2) = x(2-D)+x(2+l)=x(D+x(3)=2
n=3= YN =x(3-D+x 3+ =x(2)+x(4)=1
n=4= yid) =x(4-D+x{4+)=x(3)+x(5)=1
n=3= Yi(3) = x(5=D+x(5+1)=x(4)+x(6)=0
n=6= ¥(6) = x(6-D+x{6+)=x(5)+x(T)=0

Similarly for negative values of 'n' we get,
n=-l= yi=1) = x{(=1-D+x(=1+D=x (-2 +x(0) =1
n=-2= ¥(=2) = x(-2-D+x(-2+)=x (-3 +x(=1)=0
n==-3= Y(=3) =x(=3=D+x(-3+)=x(-4)+x(-2)=0

.. and 50 on,

... and so on.

Based on the above calculations, the sketch of x (n), x(n =1}, x(n+1), yi(n} is shown in
Fig. 2.5.6 below. For this sketch, x(n)and x (n -1) of Fig. 2.54 is used. And rin+1) of

Fig. 2.5.5 is used.
Please refer Fig. 2.5.6 on next page.

In the Fig. 2.5.6 observe that y(n) is obtained by adding x (n =I)and x (n +1) on sample
to sample basis. That is, for example |* sample of y(n) is obtained by adding 1™ samples of
x{n=1)and x (n +1). Such summation operation is often used in convolution, FFT and filtering

operations.
(¥) y(m)=2x (n) : Scaling operation :

This is the simple operation in which the samples of the sequence are scaled by some

magnitude. Here, the samples of x (n) are multiplied by 2. Thus,

n=0= ¥(0) =2-x(0)=2x]1=2
n=l= y(l) = 2-x(l)=2x1=2
n=21=s ¥(2) =2-2(2)=2x1=2
T " ¥(3) =2-x(3)=2x1=2
n=4=s ¥i{4) =2-2(4)=2x0=0
n=5= ¥(5) =2-x(5=2=0=0 ... and so on.
Similarly,
n==1 = y[—l] =2:x{-1)=2=x0=0
n=-2 = y(=2) =2-x(-2)=2x0=0 .. and so on.
The sketch of y(n) based on above values is shown in Fig. 2.5.7.
yin) = 2 xin)
2 2 2
-5 -4 =3 -2 -1 0 12345&?5933.%“

Fig. 2.5.7 Scaling operation In discrete time systems
The scaling operation is used to amplify or attenuate the sample values.
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[a;.wTha input x(n)

xin)

The sequence 1
[ﬁ?‘a- delayed uqu:{nnn-u ] x(n-1)
1
T
1

O3 —e 0O
5 -4 =3 -2 -1 |0

B p——)
(I P Y
—0

(c). The sequence x(n+1)
i.e, advanced sequence x{n+1)

1 1 1

[T

-5 4 -3 -2 - |ui

B = =

m.
ad
o
>
<
wd
@
2
3

(d}. Addition of =
x(n=1) & xin+1). yin) = xin=1) * x(n+1)
The addition lakes
place sampla
o sample

2 2
1 “71'1
11 {1
5 4 3 2 -1 |01 2z 3 4 8 san

Samples

~ g

Fig. 2.5.6 Addition operation in discrete time systems

2.5.1 Representation of Discrete Time Systems

In this section we will see, how discrete time systems are represented in the block diagram
furm The operation of the discrete time system can be completely described by these block
. The block diagrams of discrete time systems are prepared with the help of some
fu.ndﬂm:nml building blocks. Such building blocks are adders, multipliers, delay and advance
elements etc. Let us now define those blocks.

1. Adder :

An adder is used to perform the addition of two sequences. It generates the output
sequence which is the sum of input sequences. Fig. 2.5.8 shows the symbol of an adder which
adds two sequences x; (n)and x, (n).
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xy(n)

x5(n)

yin) = xy(n) + xg(n)

Fig. 2.5.8 Symbol for adder used in the discrete time systems
The additing operation is camer out on sample to sample basis. Hence there 15 no need to
store any samples. Hence this addition is also called memoryless. Some time the symbol of an
adder is also used as shown in Fig. 2.5.9. In this figure symbol E (sigma) represents
summation the signs '+' or =" are used to indicate Addition or Subtraction.

E M)

+

aln)

Fig. 2.5.9 Alternate symbol
2. Constant multiplier :

¥(n) = x4(n) + x(n)

used to represent adder

This symbol is used to show the scaling x(m) a y{n) = a x(n)

operation. This symbol is shown in Fig. 2.5.10. This
operation also does not need any storage or memory.
As shown in above figure x(n) 15 multiplied by a

constant "4 to give output sequence y(n).
3. Signal multiplier :

This symbol 15 used to indicate the
multiplication of two sequences. It is shown in
Fig.25.1L As shown in the figure, the two
sequences x,; (n)and x, (n) are multiplied on the
sample to sample basis to give sequence y(n).
This operation does not need any storage or
mMemaory.

4. Unit delay block :

The unit delay block delays the input signal
by one sample. For example when the input is
x(n) the output is x(n-1). Fig. 2.5.12 shows
the representation of unit delay block. Consider
for example when input sample is x (1), then
¥{(=x(1-1)=x(0). Thus at the output of unit

-

Fig. 2.5.10 A symbol used to
represent scaling operation

'

xq(n) \T/ yim) = x,(m}- xzin)

xz(n)

Fig. 2.5.11 A symbol used to
represent signal multiplier

(n) | 1 yin} = x(n-1)
z *

Fig. 2.5.12 A unit delay block

delay block, there is just previous sample. Such delay is produced for all the samples. The unit
delay block stores the sample value for one sample duration. Hence it needs storage or
memory for operation. The unit delay is represented by z”! in mathematical operations. This
will be explained in details in the chapter on z-transforms.
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5. Unit advance block :

This 15 used to represent advancing of the
sequence by one sample. Fig. 2.5.13 shows the = lrs
symbol of this block. As shown in the figure the IL z Jh—:tn "
output is y{n)=x (n+1) when the input is x(n).
For example when input sample is x (1), then
output sample is y (1) = x (2). Thus at the output of Fig. 2.5.13 A unit advance block
unit advance block there 15 next sample available. .
This operation is not realizable in practice. This is because, it is not possible to get next
sample when present sample is the input. Here 7' indicates the unit time advance operation.

Ex. 2.5.2 Consider the discrete time signal derived in example 2.2.4. Sketch the following
signals ;
(i) First fold x (n) and then delay resulting signal by four samples.
(i) First delay x (n) by four samples and then fold the resulting signal.
And then prove thar folding and time delay operations are not commutative.
Sol. : In example 2.2.4 we' have denived x (n) as,

x{u}l={l.3.1.1.l.l}
1373

Fig. 2.5.14 (a) shows the sketch of this sequence x(n). The folded sequence x(-n) is
shown in Fig. 2.5.14 (b). Then this sequence is delayed by four samples. It becomes
x (—n +4). Its sketch 1s shown in Fig. 2.5.14 (c).

Please refer Fig. 2.5.14 on next page.

Fig. 2.5.15 (a) shows the sketch of x (n). This sequence is delayed by four samples. It
becomes x (n—4) It 15 shown in Fig. 2.5.15 (b). This delayed sequence is then folded and it
becomes x (—n —4), This sequence is shown in Fig. 2.5.15 (c).

Please refer Fig. 2.5.15 on page 42,

Observe the two sequences obtained in Fig. 2.5.14 (c) and Fig. 2.5.15 (c) after folding and
time delay opeérations. These two sequences are totally different. This shows that time delay
and folding operations are nol commutative,

2.6 Classification of Discrete Time Systems

In the last section we defined discrete time systems. In this section we will discuss the
important properties of the discrete time systems according to which they: are classified. The
discrete time systems are classified as,

(i) Static and dynamic systems

{it) Time invariant and time variant systems

(in1) Linear and non linear systems

(iv) Causal and non causal systems

(v) Stable and unstable systems

Actually the above mentioned types of classifications describe the dynamicity, shift
invariance, linearity, causality and stability properties of discrete time systems respectively.
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{a). Sketch of *(n)
uence x(n
= " 11 1 1 1
2
3
1
3
n
-2 =1 '3[ 1 2 3
{b). The sequence x(-n)
xim) is folded, 1
it is represented 101 1 1
by ®{=n} o o
2
3
1
Ta
n
-3 =2 -1 0f 1 2
(c). The folded a[-{n—4]] = x{-n+4)
SEQUENCE X{=n) i
is delayed by 10101 1
four samples. :
2
3
1
Ta
=N
0 1 2 3 4 §5 6

Fig. 2.5.14 Folding and time delay operation

' 2.6.1 Static and Dynamic Systems (Dynamicity Property)

When the output of the systemn depends only upon the present input sample, then it is
called staric system. For example,
vin) =M-x(n)
or yin) =15-:2[r|_‘]+1l:l'.r{n}
are the static systems. Here the y(n) depends only upon n™ input sample. Hence such
systems do not need memory for its operation. A system is said to be dynamic if the output
depends upon the past values of input also. For example,
¥(n) =x(n)+x{n-1)
Thi= is the dynamic system. In this system the n't output sample value depends upon n®
input sample and just previous i.e. [nalj"’ input sample. This systems needs to store the
previous sample value. Consider the following equation of a system.
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x(n)
(a). Sketch of l
sequenca x(n) i1 1 1
2
3
1
'I's
2 -1 0 1 2 3
b). The
Xy ot
by four sampies. 1 1 1 1
i-e. x{n—4)
2
5 f
1
l
0 =1 2 3 4 5 6 7 =n
(€).The delayed
SEqUEnce
X(r—4) Is xi—n—4)
folded.

3

T‘HT =

Fig. 2.5.15 Time delay and folding operation

yin) = t x(n=k)
k=
Expanding this equation,
yi(r) = x{(n)+x(n=-D+x(n-2)+x(n-3)+x(n—-4)
This also represents a dynamic system. The output depends upon the present input and
preceding four input samples. Hence the preceding four input samples ie. x(n—1) x(n-2)
x{n-3)and x (n - 4) are stored in the memory.

2.6.2 Shift Invariant and Shift Variant Systems (Shift Invariance
Property)

If the input output characteristics of the system do not change with shift of time origin,
such systems are called shift invariant or time invariant systems. Consider thrsy.s.lem has
response y(n) for the exitation of x (n). ie.,

x(m) —T y(n)
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Then the system is shift invariant or time invariant if and only if,

x(n—k) —— y(n-k) k-constant . (26.1)
. This means if the input is shifted by k' samples, then output is also shifted by the same
number of samples for shift invariant system.

To test for shift invariance property :

To test for shift invariance, excite the system by the input x‘{n] and get output y{n). Then
delay (or shift} the input by "&' samples and calculate the output. Let this output be,

vin k) = T[x{n - k}]

Thus y(n, k)= response due to delayed / shified input.

MNow we have y(n) computed earlier. Hence obtain y(n — k) from y(n) by delaying by ' k'
samples. i.e., y(n - k)= output delayed / shifted directly. Then the system is shift invariant or
time invariant if,

vim k) =y(n-k) for all values of k'

And the system is time vanant or shift vanant if,

vin k) # y(n=k) even for single value of &’

Cooking a Rice is the shift invariant operation since every day it requires the same amount
of time. It is independent of time / day / year of cooking. Ambient temperature is the shift
variani parameter since it depends upon the period of time. For example temperature is high in
May-June whereas it is minimum in November-December. Like these, there are many physical
examples of shift invariant and shift variant systems. Few of them with their classification are
mentioned below :

Table 2.6.1 Physical examples of shift invariant and shift variant systems

Sr.No. Operation or system Type
] Bus and train arrival and departures Shift invanant
2 Rainfall per month Shift variant
3 Thermal noise in electronic components Shift invariant
£ Noise effects in the radio communication channels Shift variant
5 File handling in C language Shift invariant
6 Printing documents by the printer Shift invariant

Ex. 2.6.1 Derermine whether the following systems are shift invariant or not ?
fi) y(n)=x(n)-x(n-1)
{ii) y{n)=nx(n)
(iii) y(n)=x (-n)
(iv) y(n)=x (n)cos wy n
Sol. : (i) Consider the system described by
y(m) =T[x(n)]=x(n)-x(n-1) . (26,1 (2))

Let us apply the input to this system which is delayed by k' samples. Then the output will
be,
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yin k) = T[.: (n --k)]

=;{n—k}—x{n—k—1) o (2.6.2)
Now let us delay the output y(n) given by equation 2.6.1 by 'k’ samples i.e.,
¥in—-k) =x(n=k)=-x(n—-Kk-=1) o (2.6.3)

Here observe that
vim k) = y(n-k)
Hence the system is shift invanant.
(ii) The given discrete time system equation 1s
vin) =T[.:(n}]=n.:(n] . (2.6.4)
When input x (n) is delayed by 'k’ samples, the response is,
vim, k) =T[_r(r|-k)]
=nx(n-k) . (2.6.5)
Here observe that only input x (n) is delayed. The multiplier 'n' is not part of the input.
Hence it cannot be written as (n - k). Now let us shift or delay the output y(n) given by
equation 2.6.4 by 'k’ samples. i.e.,

yin=-k) =(n-k)x(n-k) v (2.6.6)
Here both nand x (n) in the equation y(n)=nx(n) will be shifted by k" samples since
they are part of the output sequence. It is clear from equation 2.6.5 and equpation 2.6.6 that,
yin k) = y(n-k)
Hence the system is shift variant.
{ili) The given discrete time system equation is,
yin) = T[x{n)]
=x(=n) . (2.6.7)
Here let us delay the input x (r) by k' samples. The output y(n) is equal to folded input,
i.e. x (-n). Hence x {—n) will also be delayed by %" samples. i.e.,
yin k) =T .:(n —k}
=x {—n)—i e (2.6.8)
=x(-n-k) ... (2.6.8 (a))
Here observe that we cannot replace n' by simply n—k. Since we are delaying
x(n);x (—n) will also be delayed by same amount. The equation 2.6.8 is specifically written to
indicate this operation.
Now let us delay the output y(n) given by equation 2.6.7 by k' samples. i.e.,
yin-k) = x[—(n—k)] e (2.6.9)
=x(=n+k) - (2.6.9 (a))
Here observe that we are delaying the output v(n). That is n is converted to n =k in the
equation for v{n) This is specifically indicated in equation 2.6.9. On comparing equation 2.6.9
and equation 2.6.8 we observe that,
yin k) # y(n-k)
Hence the system is shift vanant.
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(iv) The gi:ﬂsn response equation is,

vin) = T{x(n}]

=x(n)coswgn .. (2.6.10)
The response to the delayed input x (n - k) will be,
yink) =x{n=k)coswyn e (2.6.10 {a))

Here observe that "n' in cos my n is not written as (n — k) since the term ' cos wy n' is not
part of the input. Now let us delay the output y (n) by " k' samples given by equation 2.6.10,
yin-k) =x{n-k)cosay (n-k) e (2.6.10 (b))
Here 'n' is converted to (n — k) since both x (n)and cos @y n in equation 2.6.10 are part of
output y(n). On comparing equation 2.6.10 (a) and (b) we find that,
yin k) # y(n-k)
Hence the system is shift variant.
From the above example it is clear that if the system alters the timing properties of the
signal, then it is shift variant system.
2.6.3 Linear and Nonlinear Systems (Linearity Property)
A system is said to be linear if it satisfies the superposition principle. Let x; (n)and x5 (n)
be the two input sequences. Then the system is said to be linear if and only if
T {a] xy(n)+ap x4 {n}} = a; T[x, (n)] +a; T[x; (n)] . (26.11)
Here a) and a, are arbitrary constants. The above condition states that the system is said to

be linear if the combined response due to x; (n)and x, (n) together is same as the sum of
individual responses. Fig. 2.6.1 (a) shows the implementation of LHS of equation 2.6.11.

a4

X(n) T
Discrate | yin) =T {agxq(n) + agxyini}
systam
Xgin)
a5
|;
Discrete ay
— [l -
x4(n) system

@ y'in) = a,T [xy(n)] + a7 Peyin}]
T
Discrete
%2{n) tirma *
system 83

Fig. 2.6.1 (a) Representation of LHS of equation 2.6.11
Fig. 2.6.1 (b) Representation of RHS of equation 2.6.11

For the discrete time "T" to have linear y(n) in Fig. (a) must be same as y'(n) in Fig. (b)

Equation 2.6.11 can be extended further, that is if there are "M number of input signals
ie.,
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M1
x(n) = Z ay xg (n)
k=1

Then the output of such system is given as,
M =1
y(n) = 3 a yi (n)

k=1
That is if the system is linear, we have, :
- [M=1 M1
T E ag xp (n)y = Y ag yg (n) o (2,6.12)
k=1

A linear system has the important property that, it ;:mduus zero output if the input is zero
under the relaxed condition. If the system does not satisfy this condition it is called nonlinear
system. The nonlinear system does not satisfy superposition principle also.

Ex. 2.6.2 Determine whether the following systems
(i) y(n)=x(n?)
(i) y(n)=x* (n)
are linear or nonlinear.

Sol. : (i) The given equation is,

y(n) = x(n?)
For the two separate inputs x; {n)and x; (n) the system produces the response of,
yi(n) =x;(n?) - (26,13 (2)
and ¥ (n) =x5(n") o (26,13 (b))

The response of the system to the linear combination of x; (n)and x5 (r) will be,
y3(n) =T [a x;(n)+az x3 (n)]
Since the linear systems satisfy addirive property, the above equation can be written as,
¥3(n) =T {ﬂl X fﬂ)} +T{#2 Xz fi‘i}}
The linear systems also satisfy scaling property. Hence we can write above equation as,
v3(n) =a T{x;(n)} +ay T{x, (n)}
=ay x; (n%)+a; x5 (n?) from equation 2.6.13 ... (2.6.14)
This is the response of the system to linear combination of two inputs. This type of
operation is illustrated in Fig. 2.6.1 (a). Now the response of the system due to linear
combination of two outputs will be,
y3(n) =apy (n)+ay y; (n)
This type of operation is illustrated in Fig. 2.6.1 (b). From equation 2.6.13, we can write
above equation as,
y3 (n) =ay x; (n?) +a3 x5 (n?) - (26.15)
On comparing equation 2.6.14 and above equation we observe that,
yaln) =y5(n)
Hence the systern is linear,
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(ii) The given equation is,
y(n) = x%(n)
When the inputs x,{n)and x, (n) are applied separately, the responses y,(n) and y, (n)
will be,
' yiin) = ;f(n} ; - (2.6.15 (a))

and ' vy (n) = x3 (n) .. (2.6.15 (b))
The response of the system to the linear combination of x; (n)and x5 (n) will be,
yyln) = T{a] x(n)+a; xq {n]n}

= [ay x; (n) +a; x, I{rl}l]2 Since y(n)=x? (n)

= :11 x. (n)+2ay a; xy(n)x, {ﬂ}+ﬂ'-'u_ .rz (n) .. (2.6.16)
Observe that this operation is illustrated in Fig. 2.6.1 (a).
The linear combination of two outputs given by equation 2.6.15 will be,
¥y (n) = ayxi (n) +ayx3 (n)
On comparing the output of above equation with that of equation 2.6.16 we find that,
y¥3(n) = y3(n)
Hence the system is nonlinear.
We will see some more examples on linearity property of systems further.

2.6.4 Causal and Noncausal Systems (Causality Property)

In the causal system the output depends upon past and present inputs only., That is the
output is the function of x(n),x(r-1),x(n—-2),x(n-3)... and so on. The system is
noncausal if its output depends upon the future inputs also. ie. x(n +1),x(n +2).... and 50 on.
Thus the noncausal sysiems are physically unrealizable. The following example illustrates
causal and noncansal systems.

Ex. 2.6.3 Check whether the systems described by following equations are causal or
noncausal,

fi) yml=xm)l+xi{n-=1)
fii) yinl=x(n)+xin+1)

(iii) y (n) = x (2n)
Sol. : (i) The given system equation is,
yin) =x(n)+x(n~-1)
Here y(n) depends upon x(n)and x (n —1). x(n) is the present input and x(n -1) is the
previous input. Hence the system is causal.
(it) The given system equation is,
yin) =x(n)+xin+l1)
Here y(n) depends upon x(n)and x (n +1). x(n) is the present input and x (n +1) is the
next input. Hence the system is noncausal.
(iii) The given system equation is,
¥in) = x(2n)
Here when n=l = y(l)=x(2)
n=2 = y(2D=x(4) ..
Thus the output y(nr) depends upon the fu:ur:: inputs. Hence the system 15 noncausal.
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26.5 Stable and Unstable Systems (Stability Property)

When the every bounded input produces a bounded output, then the system is called
Bounded input Bounded output (BIBO) stable. The input x(n) is said to be bounded if there
exists some finite number M such that,

|x[nJ| M, <o we (2.6.17 (a))
Similarly output yi{n) is bounded if there exists some finite number M y such that,
|¥(n)] s M, <= o (2,617 (b))

If the output is unbounded for any bounded input, then the system is unstable. The
unstable systems produce erratic outputs.
We will see some examples on stability of systems further.

Ex. 264 Determine whether the following system is linear or nonlinear.

y(n) = logy (jr (n))

Sol. : The given eguation 15,
y(n) =T {x(n)} =logyg (}x (n}) o (26.18)
Let the two inputs x (n)and x, (n) be applied separately. Then the response will be,
y1(n) = logyg (%) (n) .. (2.6.19 (a))
and va(n) = logg (jx2 (n . (2.6.19 (b))

The response of the system to linear combination of x; (n)and x5 (n) will be,
y3(m) =T {a x;(n)+ay x3 (n)}
We know that T {x (n)} = log,q (|.x (n)[) Then above equation becomes,
¥ (n) = logy (ja x; (1) +ay x5 (n)) . (2.6.20)
This is the response of the system to linear combination of two inputs. Now consider the
linear combination of two outputs given by equation 2.6.19. i.e.,

¥3 (n) = a; ¥, (n)+ay y3 (n)
= a logyg (Jx, (n)) + az logyg (Jx2 (n)])
Clearly the two outputs,
¥3 (n) # y3(n)

Hence the system is nonlinear.
This can be proved very easily as follows :

Let xp(n) =100 and x,(n)=10
' yy(n) = logy l'{ﬂ)| =2
and ¥3 (n) = logyg (2 (n)) =1
y3 (n) = logyg (o1 (m) +x3 (m)f)=204139
and ya(n) =y (n)+yy(n)=2+1=3

Thus y; (n)= _}-; {n) and system is nonlinear. For simplicity we have not considered

scaling constants a; and a;. Eventhough this later procedure looks simple, it is advised that
reader should follow the first (basic) procedure only.
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Ex. 2.6.5 Few discrete time systems are given below !

(i) y(n)=cos[x(n)]
R+l

(i) y(n)= Y x(k)

k=-m
(iii) y(n)=x(n) cos (mﬁ n]
fiv) y(n)=x(-n+2)
(v) y(n)=|x (n)
(vi) y(n)=x(n)u(n)
fvii) yin)=x(n)+nx(n+l)
fwiit) y(n)=x(2n)
(ix) y(n)=x (~n)
(x) y(n) =sgn [x (n)]
Check whether these systems are :
1. Static or dynamic
2. Linear or nonlinear
3. Shift invariant or shift varying
4. Causal or noncausal
5. Stable or unstable,

Sol. : (i) y(n)=cos[x(n)]:

1.

2.

A system is static if its output depends only upon the present input sample. Here since
y(n) depends upon cosine of x (n), i.e. present input sample, the system is static.
For two separate inputs the system produces the response of,
yyin) =T {x. I{n}} = o8 [.r. I{n}]
and y2 (n) =T {x5 (n)} =cos [x; (n)]
The response of the system to linear combination of two inputs will be,
¥3(n) = 1'"{.:4l xy(n) +a; x5 ()} =cos [a; x| (n) + a3 x5 (n}]
The linear combination of two outputs will be,
y3(n) = ay y) (n)+az y3 (n)=a cos [x; (n)] +a; cos [x; (n)]

Clearly v (n) # ¥4 (n). hence system is nonlinear.

The system is said to be shift invariant or ume invariant if its characteristics do not
change with shift of time origin. The given system is,

yim) =T {x {n}} = oS [x{n]l] e (2.6.21)
Let us delay the input by k samples. Then output will be,
vin k) = T{.x l{ﬂ—.i:}}=m.5: {: (n —.i:}] e (2.6.22)

Now let us delay the output y(n) given by equation 2.6.21 by 'k samples, ie.
y{n = k). This is equivalent to replacing n by n -k in equation 2.6.21. i.e.,
y(n—k) = cos [x(n-k)] _
Comparing above equation with equation 2.6.22 we observe that,
yin k) =y(n-k)
This shows that the system is shift invariant.
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4.

5.

The system is said to be causal if output depends upon past and present inputs only.
The output is given as,

vi{n) = cos [J:{rl}]
Here observe that n™ sample of output depends upon n' sample of input x(n).
Hence the system is a causal system.

For any bounded value of x(n) the cosine function has bounded value. Hence y(n)
has bounded value. Therefore the system is said to be BIBO stable.

Thus the given system is,

Static, nonlinear, shift invarant, causal and stable,

R |

() y(m)= 3 x(k):

l.

l‘q—-ﬁ

Here observe that the system's output for n' sample is equal to summation of all past
input samples, present input sample and one next input sample, Hence the system
needs to store these samples. Therefore the system reguires memory. Hence this
system is dynamic system.
The output v(n) can be written as,

yin) =x(-w)+... +x(-2)+x(-1)+x(D+x (1)

+x(D+x(3)+...+x(n)+x(n+l)

From this equation it is clear that the system is linear since it is the summation of
individual inputs, We know that the summation operation is a linear operation. Hence
the system is a linear system.
The given system produces output y(n) as a linear summation of inputs. If we shift
the inputs, then there will be corresponding shift in the output. Hence the system is
shift invariant.
The output v{n) can be expressed as,

yin) =x(-x)+.. . +x (-2 +x (-1} +x (0) +x (1)

+x(2)+x(N+...+x(n)+xin+l)

In the above equation the present output y(n) depends upon past inputs like
x{=), x(-2)x (-1)x(0)...x(n -1} It also depends upon the present input x (n) and
future or next input x (n +1). Hence the system is noncausal since its output depends
upon the future inputs also.
Consider that the system has input x (k) as unit sample sequence u (k). We know that,

1 fi k=20
(k) = R
0 otherwise

Hence the system equation becomes,
i+ |

yin) = 3 u(k)
k=10
=1l+1+1+41+4...(n+1) number of times 'l" are added _
For example if n =35, then above equation becomes, ."I
V(5 =141+#1+1+1+1+1=7
if m=10, y(10) =1+1+1+1+1+1+1+1+1+1+1+1=12
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It is clear from above equation that as n — o, v(n) = =. Here the input u (k) is the
unit sample sequence and it is bounded. But output y(m) is unbounded as n —» =,
Hence the system is unstable. Thus the given system is,

Dynamic, linear, shift invariant, noncausal and unstable.

{iid) ]{n}=:l’_n}m.r{m. n] ;

L.

This is a static system since, the output of the system depends only upon the present

~ input sample. i.e., n" output sample depends upon n" input sample. Hence this is a

slatic, sysiem.
We know that the given sysiem is,
yin) =T {.r I'_n]l} =x(n)cos (wy n)
When the two inputs x| (m)and x, (n) are applied separately, the responses
¥ (n)and y5 (n) will be,
yy (n) = T{xy (M} =x; (n) cos (0 n) } . (2623)
yin) = T{x; l_'n}} =X4 (n) m.s'{mn n}
The response of the system due to linear combination of inputs will be,
y3 (n)= T{ﬂ| xy(n)+a; xsy {n}} ={a, xi(n)+as x4 {rl}] cos (ﬂ‘lﬂ n]
= a, x, (n) cos (wyp n) +ay x4 (n) cos (wy n) e (2.6.24)
Now the linear combination of the two outputs will be,
y3(n) = ay yy (n)+as y; (n)
= a) xy (n) cos (wyn ) +ay x4 () cos (wgn) from equation 2.6.23
From above equation and equation 2.6.24,
yyin) = }‘:I; (n). Hence the system is linear.
The system equation is, .
¥in) = x(n)cos '::':']'I:l n]
The response of the system to delayed input will be,
yin k) = T{I'[-'t - H}
=x{n-k)cos {f.nu n} v (2.6.25)
Mow let us delay or shift the output y(n) by ' k' samples. i.e.,
yin-k) =x(n-k) m.r[w“ {n—.i:}]
Here every 'n' is replaced by n - k. On comparing above equation with equation
2.6.25 we find that,
y(n, k) # yin—k) Hence the system is shift variant.
In the given system, y(n) depends upon x (n), i.e. present output depends upon present
input. Hence the system is causal.
The given system equation is,
y(n) = x(n)cos (@g n)
Here value of ms{mu n) is always bounded. Hence as long as x (n) is bounded, v(n)
is also bounded. Hence the system is stable.

This system is,

Static, linear, shift variant, causal and stable,
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(iv) yin)=x(-n+12):

1.

Tt

3.

It is clear from above equation that n™ sample of output is equal to (-n -r:.’.]'-’I

sample of input. Hence the system needs memory storage. Therefore the system is
Dyname.
It is very easy to prove that this system is linear.
The output y(n) for delayed input will be,
yin k) =T{x(n~-k)}
=x(-n+2-k) e (2,6.26)
Now the delayed output will be obtained by replacing n by n-k in the system
equation i.e.,
yin—k) =x[-(n-k)+2]
=x (-n+2+k)
On comparing above equation with equation 2.6.26 we find that,
vin, k) # y(n—k) Hence the system is shift variant
In the given system equation, when we put n =0 we get,
' y(0) = x(2)
Thus the output depends upon future inputs. Hence the system is noncausal.

It is clear from the given system equation that, as long as input is bounded, the output
is bounded. Hence the system is a stable system.

Thus the given system is,

Dynamic, linear, shift variant, noncausal and stable.

(V) y(m)=|x(m)

1.

2.

The ouwtput is equal to magnitude of present input sample. Hence the system does not
need memory storage. Therefore the system is static.
The given system equation is,
yin) = T{x I[n]} =P:{nﬂ
For two separate inputs x; (n)and x4 (n) the system has the response of,
¥ (n) = T{x ll:"}} =|.r1 {"ﬁ } . (2627)
¥z (n) = T{xy (n)} =|e; (n)
The response of the system to linear combination of two inputs x| (n)and x5 (n) will
hEI-
¥i(n) =T{a x,(n)+ay x; (n)}
= |ﬁj x(n)+ap x4 {ﬂ* e (2.6.28)
MNow the linear combination of two outputs will be,
¥a(n) =ay ¥, (n)+a;y y; (n)
=& r (n)+a; xz (n)
Here observe that v5 (n)#y; (n). Hence the system 18 nonlinear,
Delaying the input by "k samples, output will be,
yin k) = T{x{n —k}}

- s (- )

And the delayed output will be,
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4.

5.

vin-k) =l.t{n—k)|
Since y(n, k)=y(n —k), the system is shift invariant.
The system equation is y(n)=|r(n)| The output depends upon present input. Hence
the system is causal.
From the given eguation it is clear that as long as x (a) is bounded, v(n) will be
bounded. Hence the system is stable,

Thus the given system is,

Static, nonlinear, shift invariant, causal and stable.

(Vi) y(n)=x(m)uin)

L.
2.

The output depends upon present input only. Hence the system is static.
The given sys..  :quation is, :
yin) =T{x(n)} =x(n}u(n)
The response of this system to the two mmputs x;(n)and x5 (n) when applied
separately will be,
y(n) =T{x; (m)}=x (n)u(n) }
¥z (n) =T{x; (n)} =x; (n)u(n)
The response of the system to linear combination of inputs x; (n)and x, {n) will be,
3 (n) =T{a x; (n) +ay x5 (n)}
= [ﬂl xp(n)+a; x, {n]l] win)
=ayx;(nluln)+ay x; (n)uin) o (2.6.29)
The linear combination of two outputs of equation 2.6.28 will be,
¥3(n) = ay y, (n)+az y; (n)

. (2.6.28)

=g xp(nuln)+a; x; (n)uin)
From above equation and equation 2.6.29 we find that,
. ¥y(n) = }'_:, {n), hence the system is linear.
The response of the system to delayed input will be,
yin k) = T{x{n —k}}

=x(n-Kk)uln) e (2.6.30)
The delayed output will be obtained by replacing 'n' by n - k. ie.,
yin—k) sx{n-kluin-k) - (2.6.31)

Here, on comparing above equation and equation 2.6.30, we find that,

yin, k) # yin—k) Hence the system is shift variant.
The system equation is, y(m)=x(n)u(n) The output depends upon present input
only. Hence the system is causal.
We know that w(n)=1formn 20 and u(n)=0for n< 0. This means u (n) is a bounded
sequence. Hence as long as x (n) is bounded, y(n) is also bounded. Hence this system
is stable.

Thus, the given system is,

Static, linear, shift variant, causal and stable.
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(vii) yin)=x(n)+nxin+1):

2.

5.

From the given equation it is clear that, the output depends upon the present input and
next input. Hence system is dynamic.
The given system equation is,
yin) =T{x(n)}=x(n)+nx(n+l) .. (26.32)
If we apply two inputs x; (n)and x5 (n) separately, then the outputs become,
yi(n) =T{xi(m}=x, (n)+nx, (n+]) } . (2632 (@)
and y;(n) = T{x; {n]} =xy(n)+nx;(n+l)

Response of the system to linear combination of inputs x| (n)and x5 (n) will be,
yy(m) = T{a! xp(n)+as x5 LnJ}
= a [11 (n)+nx;(n +1]] + a3 [.rz (n)+nxy(n +l}]
. . (2.6.33)
The linear combination of two outputs given by equation 2.6.32 (a) will be,
y3(n) = ay y, (n)+ay y (n)
=a {I] (n)y+nx;(n +1]]+ag [x: (n)+nxq(n +1}I]
On comparing above equation with equation 2.6.33 we observe that,
¥3 (n) = y; (n), Hence the system is linear.
The given system equation is,
yin) = T{x {n}} =x(ni+nxin+l1) .. (2.6.34)
Response of the system to delayed input will be,
y(n k) =T{x(n-k)}
sx(n-k)+nx(n=k+1) .. (2.6.35)
Mow let us delay the output of equation 2.6.34 by ' k" samples. i.e.,
vin—k) =x{n-k)+(n-k)x(n-k+1)
Here we have replaced 'n" by 'mn—k'. On comparing above equation with equation
2.6.35 we observe that,
vin, k) = v(n-k), Hence the system is shift variant.
The given system equation is,
vin) =x{n)+nxin+l)
Here observe that n™ output sample depends upon (n +I:|”' i.e. next input sample.
That is the output depends upon future input. Hence the system is noncausal.
In the given system equation observe that as n—s o, y(n) =+ even if x(n) is
bounded. Hence the system unstable.

Thus the given systemm is,

Dynamic, linear, shift variant, noncausal and unstable.

(viii} y(m)=x(2n):

1.

By putting n =1 in the given system equation,
y(1) = x(2) similarly,
n=2= y(2l=x(4)
n=3= y(3=x(6) andso on.
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3.

5.

Thus the system needs to store the future input samples. Hmﬂq*lt requires Memory.
Therefore the system is dynamic. i .
The given syslem equation is, '
yin) = T{ {n}} =x(2n) N St . (2.6.36)
For two separate inputs x| (n)and x4 {n) the system pmdu::s. I.h: response {:f
yi(m) =T{xi(m}=x,(2n) } . (2637)
and y3(n) =T{xy(n)}=x;(2n)
The response of the system to linear combination of x (n)and x4 (n) will be,
¥y (n) =T{a, xy(n)+ag xy(n)} '
=aypxy(2n)+ap; x,(2n) e (2.6.38)
Now the linear combination of two outputs given by equation 2.6.37 will be,
yi(n) =a y (n)+a; y;(n)
=ay xy (2n)+ay x5 (2n)
On comparing above equation with equation 2.6.38 we find that,
¥3 (n) = yy (n), Hence the system 15 linear.

The given system equation is,
y(n) =T{x(n)}=x(2n) . (2.6.39)
The response of the system to delayed input x (n = k) will be,
yin k) =T{xi{n-k)}=x(2n-k) .. (2.6.40)

Now let us delay the output y(n) given by eguation 2.6.39 by "k' samples. This is
obtained by replacing 'n" by n =& in equanon 2.6.39. 1.e.,
yin-k) = x{ﬂ(n—kl]

s vin-k) =.:(2n—2k)

On comparing above equation with equation 2.6.40 we find that,
yim, k) # yin-k). Hence the system is shift variani.
The given system equation is,
¥i{n) = x{in)

Here output depends upon future inputs. i.e. n' sample of output depends upon (2n)™
sample of input. Clearly the system 15 noncausal.

As long as x (n) is bounded, then x (2n) is also bounded. Hence output y(na) is also
bounded. Therefore the system is stable.

Thus the given system is,

Dynamic, linear, shift variant, noncausal and stable.

(ix) y(n)=x(-n):

If the present input is x (n), then output y(n) is x(—n). That is if input is x (4) then
output is x (~4). Thus the system has to store input sequence in the memory. Hence
the system is static.
The given system equation is,

yin) = T{: {n]} =x(-n) . (2.6.41)
When the two inputs x;(m)and x, (n) are applied separately, then the responses
¥y (n)and y5 (n) will be
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4,

5.

¥ (n) = T{.I| (ﬂ}} =I {=n) ~ } .. (2.6.42)

¥2 (1) = T{x, (m)} =x; (-n)
The response of the system to the linear combination of x| (n)and x5 (n) will be,

y3 (n) =T{ay x| (n)+ay x5 (n)}

=g x;(-n)+ay x5 (—n) e (2.6.43)

The linear combination of two outputs y; (n)and ¥, (r) given by equation 2.6.42 will
be.

:-'; (n) =a; y (n)+a; yy(n)

=gy Xy (=n)+a;y x5 (=n) o (2.6.44)
On comparing above equation with equation 2.6.43 we find that,
¥y (n) = ;.r'] (n), Hence the system is a linear system,
Let us apply the delayed input to the system,. Then the response will be,
vin k) = T{.tl[u -.5:}}
=x{-n—-k) e (2/6.43)
We know that the system equation is given as,
y(n) =x(-n)
Now let us delay the output y(n) by 'k' samples. This can be obtained by replacing
"n' by (n - k) in the above equation. i.c., .
yin=k) =x[-(n-k)]
=x(-n+k) ... (2.6.46)
On comparing above equation with equation 2.6.45 we observe that,
yvin, k) # y(n—k), Hence the system 15 shift vanant.
This same result we have obtained in example 2.6.1 also.
The given system egquation is,
yn) =x(-n)
For n=-2=vyi(n)=x(2)
For n=-=l=y(n)=x(1) etc.
Thus the output depends upon future inputs. Hence the system is noncausal.
As long as x(n) is bounded, x (—n) will also be bounded. Hence the output y(n) is
also bounded. Therefore the system is stable.

Thus the given system is,

Static, linear, shift variant, noncausal and stable.

(x) yin)=sgn[x(n)]:

1.
2,

Since output depends upon the present input only, then this system is static.
The given system equation is,
yin) = T{.: l{n}} =sgn [x (n)]
When the two inputs x, (n)and x; (n) are applied separately, the responses y; (n) and
¥5 (n) will be,
yi () = T{x ()} =sgn[x, (m] } . (2647)
¥z (n) =T{x; (n)} =sgn[x; (n)]
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The response of the system to linear combination of x| (n)and x5 (n) will be,
yyin) = T{a. xy(n)+a; x, l{ﬂ}}
= sgn [a x) (n) +a; x5 (n)] ... (2.6.48)
Basically sgn [;rl[n}l] =]forn>0 and sgn El.r[n} =-1 for n< 0. In the above equation
¥3 (n) will have a value of '1' for n>0 and '-1' tor n< 0.
The linear combination of two outputs given by equation 2.6.47 will be,

;r;, (n) =a; yy(n)+a; yvoin)
= ay sgn [x) (n)] +a; sgn [x; (n)] e (2.6.49)
In the above equation sgn|x;(n)|=1forn>0 and -lforn<Q Similarly
5gn [.::1 {n}1=1 for n>0 and -lforn< (. Hence the values of y;(n) of above
equation and yy (n) of equation 2.6.48 are not same.
ie ¥y {n}:y; (n). Hence the system is nonlinear.
3. The given system equation is,

y(n) =T{x(n)]=s8n [.rfn}l] e (2.6.50)
The response of the system to delayed input x (n — k) will be,
yin k) = T{x{n—k}}:sgn [.r-[rt-k]l] e (2.6.51)

.1 for n>0 and
= =] for n<i

The delayed output y(n = k) can be obtained from equation 2.6.50 by replacing "n° by
(n=k)ie.,

Here sgn E.: (n -..i'r}]

yvin=k) =zsgn [.r{n—i:}l} o (2.6.52)
On comparing above eguation with eguation 2.6.51 we find that,
vin, k) = y(n-k), Hence the system is shift invariant.
4, Since y(n) depends upon the present input. This is a causal system.
5. Since sgn [.t (n)] has a value of +1 depending upon ' ', this is a stable system.
Thus the given system is,

Static, nonlinear, shift invariant, causal and stable.

Ex. 2.6.6 For the systems representied by following functions, determine whether every system
;‘::l Stable (ii) Causal (iii) Linear (iv) Shift invariani.
1) T[x(n)] = gt (1
2)T[x(n)] =ax(n)+6 [Dec - 99]
Sol. : (1) y(m)=T [x(m)]=¢"'":
(i) The given system equation is,
y(n) = T{x(n)}=e"" . (26.53)

For bounded x (n), ¢*'™ is also bounded. [Note that value of ' ¢ is basically 2.7182818.].
Hence the given system is a stable system.

(ii) Present value of output depends upon present value of input. Hence this is a causal
system.

(iii) The response of the system to linear combination of two inputs x; (n) and x, (n) will
be,
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,}'3.{-"} ‘T{ﬂ| X {ﬂ-}-i'ﬁg Xq I:ﬂ}}
From equation 2.6.53 we can write,
¥3 {-ﬂ} - E#lxl{ﬂ}l+ aj x3ja)

= M 1N ja x3(n) .. (2.6.54)

The response of the system (o two inputs x, {(m)and x5 (n) when applied separately is
given as,

y(n) =T{xn(m}=ett™ } (2655)
ya(n) = T{x; (n}} =g*2"
The linear combination of two outputs given by above equation will be,
¥3(n) = ayyy(n)+ay yy (n)
=a 1" 4, 2! Putting values from eq. 2.6.55
On comparing above equation with equation 2.6.54 we find that,
y3 (n) # y3 (n), Hence this system is nonlinear.
(iv) The response of the system to delayed input will be,
yin k) = T{x (n —k]}
= gtln-b) - (2.6.56)
The delayed output can be obtained by replacing "n' by "'n - &' in equation 2.6.53. i.e,
y(n-k) = g~ (n—k)
On comparing above equation with equation 2.6.56 we find that,
yi{m k) = y(n—k), Hence the system is shift invariant.
Thus this given system is,

Stable, causal, nonlinear and shift invariant.

(2) y(n)=T {x(n)}=ax(n)+6:

{i) In the given system equation 'd is constanl. As long as x (n) is bounded, v(n) is also
bounded. Hence the system is stable.

(11} Present output depends upon present input only. Hence this is as causal system.

(iii) The response of the system to linear combination of two inputs x; (n)and x, (n) will
be,

¥y (n) = T{ﬂ| xy(n)+ay x4 fn}}
= ﬂ[.ﬂ', xp(n)+ay xq {n}] + 6 e (2.6.5T)
Here above equation 15 wrilten from given system equation with x{(n)=a, x, (n)+
as x5 (n). The response of the system to two inputs x; (n)and x5 (n) when applied separately
is given as,
}'.(i‘l] =T{-¥] {ﬂ}}=ﬂ:l{"}+ﬁ } (2.6.58)
and y,(n) = T{.:g l[u]} =ax;(n)+6

The linear combination of two outputs given by above equation will be,
J-’.; (n) =a; y(n)+az yy(n)
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=a [,ﬂ,rt [:ﬂ:]--l- 6] +{Iz [EII (F‘I] +5]
Putting values from equation 2.6.58
On comparing above equation with equation 2.6.57 we find that,

¥ (n) # yIJ (n), Hence the system is nonlinear.
(iv) The response of the system o the input delayed by "k samples will be,

yvim k) = T{.:: (n —.I:}}

=agax(n-k)+6 . (2.6.59)
And the delayed output by "k' samples will be obtained by replacing 'n' by (n—k) in
given system equation. 1.e.,
vin-k) =axin-k)+6

On comparing above equation with equation 2.6.59 we find that,
¥im k)= y(n-£k), Hence the system is shift invanant.
Thus the given system is,

Stable, causal, nonlinear and shift invariant,

Ex. 2.6.7 A discrete time system is given as,

y(n) =y (n=D+x(n)
A bounded input of x (n)=28(n) is applied to the system. Assume that the system
is imitially relaved. Check whether this svstem is stable or unstable.

Sol. : The input x (n) =28 (n) is applied. We know that,

1 fi =)
$(n) = or n=1(
0 for n20
x(n) = 2 for n=0
0 for n=0

y(0) = y* (0-1)+x(0)
Since system is initially relaxed, y* (0=1)=y* (-1)=0
and x(0)=2 as illustrated above.
y y0y =2
Now yi(l) = y2 (1=1+x(1)
=y (0)+x (1)
Since x (n) =0 when n #0, above equation becomes,
y() =y*(0)=2°
Similarly, y(2) =y (2-D+x(2)
=y* (1)
- (11): _2t =27

y(3) =y 3= +x(3)
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= y2(2)
- (z“)I _ 98 o7
y(4) = y* (4-1)+x(4)
=y (3)
2 4
_ (zs) =9l6 _ 52

Similarly y(n) = 2%
Here as n — o, y(n) — o, Thus the input x (n) =248 (n) is bounded but output y(n) is not
bounded for all “n'. Hence the system is unstable.

Ex. 2.6.8 Two systems are connected in cascade as shown in Fig. 2.6.2,
x(n) T, ¥q(n) E yin)
Tl:

Fig. 2.6.2 Cascade connection of two systems
Prove that
(i) T.=T T}
(ii) If T, and T, are shift invariani, the T, is also shift invariant.
Sol. : The output of first system is ¥; (n). It is given as,
yi(n) =T {x(n)} e (2.6.60)
The output of second system is y(n). It is given as,
yin) =T, {}'1 {H}}
Putting for y; (n) from equation 2.6.60 we can write,
y(n) =T {1} [x(n)]}
=T T) {x(n)} e (2.6.61)
If we consider overall system T, then we can write,
y(n) =T {x(n)}
From above equation and equation 2.6.61 we can wrile,

T. =T; T, ... (2.6.62)
(ii) Since T; is shift invariant we can write,
yi(n=k) =T {x(n-k)} .. (2.6.63)

Similarly since T, is shift invariant we can write,
yin-k) =Ty {y, (n-k)}
Putting for y; (n - k) from equation 2.6.63 in above equation,
y(n-k) =T {T; [x(n-K)]}
=T1 T]_ {A’[ﬂ—i}}
Since T_ =T, T; above equation becomes,
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yin-k) =T, {x (n —i}}
This shows that the overall cascade system T is also shift invariant.

Ex. 2.6.9 Two systems are connected in parallel as shown in Fig. 2.6.3.

Te

T, ¥q(n)

x(n) et (1)

T;

¥a(n)

Fig. 2.6.3 Parallel connection of two systems
Prove that T, =T, +T;
Sol. : The outputs of systems T, and 7; are related to input as,
yin) =T, {x(n)}
and : y2(n) =T {x(n)}
The output y; (n) can be given as,
¥3(n) =y (n)+yz(n)
=T {x(n}} +T; {x(n)}
= {1'1 +1':1_.:| {x {r.r]l} e (2.6.64)

For the overall system,
y3(n) =Tp {x(n)}

Hence from above equation and eguation 2.6.64 we can write,

Tp = Ti +T2 {16.&5}
Ex.2.6.10 Following systems are used in sampling and quantization of signals,
1. Truncation
x(n) Truncation of yin)
x(n})
2. Rounding
Pounding of
N{--.-n—--n‘h - ::n}lunuraﬁﬂu ——— ¥in)
integer
3, Sampling
Xyl ideal sampling x(n) = xy(nT}
system —

Fig. 2.6.4 Truncation, Rounding and Sampling systems

State whether these systems are
fi) Static (i) Linear (iii) Shift invariant (iv) Causal and (v} Stable.
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Sol. : 1. Truncation of x (n) :

(i) Since the output v (n) is the integer obtained by truncation of x (n), there is no need to
store any samples of x(n). Present output depends upon present input. Hence u'unca.ti.ﬂn
operation is static.

(ii) Let the two input samples be,

' xy(n) = 2713
xy (n) = 3.521
When these two inputs are applied separately the outputs of truncation become,
v (n) = I'r:-_mr:{x. {n}} =Tﬂmr{l?1]} =2
and v (n) = !"nmc{.rz {n}} =Tmnr{3521} =3 e (2.6.66)
The linear combination of these two outputs become,
valn) =y (nh+yyin)
= 2+3 from equation 2.6.66
=5 e (2.6.67)

Let us consider the output of the truncation system 1o linear combination of two inputs.

1L,
y3(n) = Trunc {x(n)+x5 (n)}

= Trunc{l?l3+351l}
= Trunc {5.134}
=6
On comparing ."";4 (n) obtained above with y4 (n) of equation 2.6.67, we find that,
¥y (n) 1_}'; (n), Hence truncation is nonlinear.
(iii) If the input x (a) is delayed, there will be no effect on the result of truncation. Hence
truncation operation is shift invariant.
{iv) The truncation operation is done only on present input sample. Hence the truncation
operation is causal.
(v) As long as input x (r) is bounded, the output integer obtained by truncation is also
bounded. Hence truncation is stable system.
Thus truncation system Is,

Static, nonlinear, shift invariant, causal and stable.

(2) Rounding of x (n) :
On the same lines as truncation, it can be shown easily that rounding system is,

Static, nonlinear, shift invariant, causal and stable.

(3) ldeal sampling system :

(i) There is no need to store the input analog signal. At the time of sampling the output
x {n) is equal to amplitude of x (r). Hence ideal sampling is the static operation.

(ii) The sampled amplitude ie. value of x(n) is exactly equal to the instantaneous
amplitude of x, (r} Hence the system is linear.

(iii) The sampling operation is independent of time shift. Hence it is shift invanant system.

(iv) The output x (n) depends upon amplitude of input at time "nT". Hence this is a causal
system,
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(v) As long as input x, (r) is bounded, its samples. x (n)=x_ (nT) are also bounded.
Hence this is stable system.

Thus ideal sampling system is,

Static, linear, shift invanant, causal and stable.

2.7 Linear Time Invariant (LTI) Systems

We classified discrete time systems in the last section. We also siudied the properties like
linearity, causality, shift invanance, stability etc. Majonty of the discrete time systems in
practice are linear and shift invanant. Hence we will study Linear Shift Invanant (LTI) systems
in more details in this section. Such systems are also called as Linear Time Invariant (LTI)
systems. In this section we will also introduce the Linear Convolution. This is a powerful
analytical tool for studying LTI systems. We will also demonstrate that the LTI system can be
completely characterized by its unit sample response.

2.7.1 Discrete Time Signal as Weighted Impulses

Here we will first see how a discrete time signal can be expressed in the form of weighted
impulses. Consider the arbitrary discrete time signal x(n) of five samples .
x {n]={1 1, 3, -2..!}
nT

Here x(-2)=2 x (D)=L x(0)=3,x(1)=-2 and x(2) =1 This signal is shown graphically
in Fig. 2.7.1. below.

e (27.0)

z(n)

2 3
1 1

& ? 1 ? & N
2

-2 - Iﬂ l Samples

Fig. 2.7.1 Sketch of discrete time signal of equation 2.7.1

Now let us consider the unit sample sequence 8(n) defined in section 2.3.1. Fig. 2.3.1
shows the sketch of & (n). It is defined as,

-2

G(n) =1 for n =0 By equation 2.3.1 - (2.1.2)
=0 for n=0
MNow if 6(n) is delayed by one sample, then above equation will be,
d(n-=1) =1 for n=1
=0 for n=1
Similarly if & (n) is advanced by one sample, then it can be represented as,
Gin+l) =1 for n= -1
=0 for n=-1

This can be generalized. The & (n) function delayed by " k' samples can be represented as,

S(n-k) =1 for n=k . (2.1.3)
-0 for n =k
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Here k can be positive or negative. Fig. 2.7.2 shows the sketch of a signal 5(n - k) for
k=2

&{n—k)

—————
3 -2 -1 |o 1

Fig. 2.7.2 Sketch of a delayed unit sample sequence. Here delay, k =2 samples
Now let us multiply x(n) and & (n — k). The value of & (n — k) is zero everywhere except
at n = k. Hence the result of multiplication becomes,
x(n)8(n-k) =x(k)6(n-k) o (2.7.4)
This operation is indicated in Fig. 2.7.3. Fig. 2.7.3 (a) shows the sequence x(n) of
Fig.2.7.1. Fig. 2.7.3 (b) shows the delayed unit sample sequence &(n—-k&) of Fig. 2.7.2.
Fig.2.7.3(c) shows the product sequence x(n)&(n - k). Thus equation 2.7.4 is clear since
xin)=x(k) at n=k. Fig. 2.7.4 shows the vanious product sequences for x(n) of Fig. 2.7.3.
From Fig. 2.7.4 it is clear that if we add all the product sequences x (k)& (n - k), then we get

(a). A discrete x(m)
3 3
1 vl .
-2 =1 |D l 2 Samples
-7
(b). A delayed &{n—k)
unit sampla &
saquence &(n—k).
Here k=2,
1 =2
0. 00— o -—0 n
2 1 o 1 2 Samples
{c). Product sequence x{n) &(n—k) = x(k) &{n—k)
xin) Bn—k}) 1
which Is samea
as x(k) 8(n-¥). | ke
Here k = 2. 0 k=2
+—0 o o —H—o - n
Samples

Fig. 2.7.3 The product x (n) 5(n - k) =x (k) &(n - k)
since S({n-k)=1at n=k and x (n) =x (k)
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{a). The product %) B{n—k)
sequence at k = -2,
It is wnit sample
waightad by 2 k=-2

i=2j=2atn==1

{b). The product
Sequencs al k = =1,
it is wnit sample
waighied by

2-1j=1atn=-1

c) k=0

Unit sampla
welghted by
0y atn=0

{d). k=1.
Linit samgple
waighted by
wf1jatn=1,

el k=2

Unit sample
weighted by
x(2)atn=2,

(f). A summation of
product Sequences
in Fig (a} to (&)
resulls in sequence
1in)

Samplas

xik) &{n—k)
b
k= -1
1
o ? 00—+
-2 =1 |0 1 2 3 Samples
k) G{n=k}
3 k=0
5. o oo o n
0 Samples
xifk) {n—k])
k=1
1
- o—o oo * N
0 l Samples
2
(k) S{n—k)
k=2
1
- S — o ? o * 1
-2 -1 0 1 2 Samples
£ x{k) B{n—k) = x(n)
o 3
1 i
1
) ? T -
-2 -1 2 Samplas

°l

-2

Fig. 2.7.4 A discrate time signal x(n) is expressed as sum

of weighted unit samples
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x(n). Here k' varies from -2 to +2. For the generalized case the range of "k' will be
- < k< o, to accommodate all possible samples of x (n). Thus,

xi{n) = i x(k)8(n—-k) o (2.7.5)
k=-m
In this result the infinite number of unit sample seyuences are added to get x(a) The umit
sample sequence &(n —k) takes an amplitudes of x(k). The result of equation 2.7.5 is anm
important one useful for convolution as we will see.

For the sequence x(n) given by equation 2.7.1, the range of '&" will be, =22 k £ 2 Hence
equation 2.7.5 above can be written as,

xm = 3 x(0)8(n-k)
k=<3
Expanding above summation, we get,
x(n) =x(-D8(n++x(-18(n +1)+x{0)&(n)
+x(D8(n-1)+x (2)8(n-2)
Putting the values of x(n) from equation 2.7.1, above equation becomes,
x(n) =28(n+2)+6(n+1)+36(n)=28(n=1)+8(n-2)
. (2.7.6)
Thus x(n) is equal to the summation of unit samples. The amplitudes of unit samples are

basically sample values of x(n). The unit samples represent the location of particular sample
or its delay in the sequence x(n)
2.7.2 Linear Convolution

Linear convolution is a very powerful technique used for the analysis of LTI systems. In
the last subsection we have seen that how the sequence x(n) can be expressed as sum of
weighted impulses. It is given by equation 2.7.5 as,

x(n) = i (k)6 (n-k) w (2.1.7)
k==
If x(n) is applied as an input to the discrete time system, then response y(n) of the
system is given as,

y(n) = Tlx(n)]
Putting for x(n) in above equation from equation 2.7.7,

yin) = T[ i ;[k}ﬁ{u-k}]

‘:'--I:l}

The above equation can be expanded as,
y(n)=T [ ,,,,, +x (=8 (n+D+x (-8 (n++x (-DE(n +1)+x (0)& (n)

+x (DEn=-D+x (DB(n-+x (NS (n=3)%........ ]

e (2.7.8)
Since the system is linear, the above equation can be written as,
yin)=..... +T [x{—3} Gin +3]|] +T [r{v-E] &(n +2','|] +T [x[—i] &(n +1}I] +T [.t{ﬂ'} E{ﬂ}]
+T [.r(l} &in -l}l] +T [1[1} &(n —2]] +T [.x{B-} o(n —3}] S
o .2.7.9)
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The linearity property states that output due to linear combination of inpuis [equation
2.7.8] is same as the sum of outputs due to individual inputs [equation 2.7.9]. Thus we have
writien equation 2.7.9 from eq. 2.7.8 with the help of linearity property. In the above equation
[equation 2.7.9] the sample wvalues ....x(=3), x(=2), x(=1), x{0), x(1),x(2)..... etc. are
constants. Hence with the help of scaling property of linear systems we can wnte equation
2.7.9 as,

yin)=...... +x(-30T [E (n +3}] +x(=2)T {E(n +2:|] +x(-1)T [E-{n +1}] +x(W T [E{n}]
+x(DT [B(n=-1]+ x(DT[(n-2)] + x(A)T[E(n =3)] +.....

o (2.7.10)
The above equation we have written on the basis of scaling property. It states that if
y(n)=T[ax(n)} then y(n)=aT[x(n)] for a= constant. The above equation can be written in
compact form with the help of ' }» ' sign. ie.,
y(n) = Z x{k}T[EEn—t}] e (2.7.11)
km=m
The response of the system to unit sample sequence & (n) is given as,
T[E I[H]I] = h(n) v (T.12)
Here h{n) is called unit sample response or impulse response of the system. If the discrete
time system 1s shift invariant, then above equation can be written as,
T[a(n-k)] = h(n-k) w (2.7.13)
Here "k' is some shift in samples, The above equation indicates that; if the excitation of
the shift invariant system is delayed, then its response is also delayed by the same amount.
Putting for T[E{rl -.I:]-] =hi{n - k) in equation 2.7.11 we get,

y(n) = 3 x(k)h(n-k) e (2.7.14)
k=-m=
This equation gives the response of linear shift invariant (LTI) system or LTI system to an
input x(n). The behaviour of the LTI system is completely characterized by the unit sample
response hin). The above equation is basically linear convolution of x(m)and h{n). This
linear convolution gives y(n). Thus,
Linear Convolution : y(n) = x(n)=h(n)

y(n) = ¥ x(k)h(n-k) . (2.7.15)
k=—m
y(n) is the response, x(n) is the input to the sysiem and h{n) depends upon characteristics
of the system. Fig. 2.7.5 illustrates this relationship.

Diiscrate tima
Inpul seguence syslnm with DOulput sequence
unit -
n(n} -"mi yin) = ﬂ;ﬁ k()
= L xk)hin-k)
k=—m

Fig. 2.7.5 Convolution of unit sample response h(n)
and input sequence x (n) gives output y(n) in LTI system

Computation of Linear Convolution :

Now let us see how to calculate y(n) by using linear convolution of equation 2.7.15. With
n =0, equation 2.7.15 becomes,
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n=0= y0) = ¥ x(yh(-k)

l:—!ﬁ

Here x (k)and h(—k) are multiplied on sample to sample basis and added together to get
y(0). Observe that basically h{-k) is the folded sequence of h{k). Similarly with n =1
equation 2.7.15 becomes,

n=l = yh = 3 2y h-k)

k=—m

=]
= Z x(k)h[<k -1)] By rearranging the equation.

k==ma

Here again x(k)and h [k —1)] are multiplied on sample to sample basis and added
together to give y(1). Here A[<{k —1)] indicates shifted (or delayed) version of h{-k) by one
sample since n =1,

Similarly y(n) can be calculated for other values. Thus the operations in computation of
convolution are as follows :

(i) Folding : Sequence h(k) is folded at k =0, to get hi{-k)

(ii)} Shifting : h(—k) is shifted depending upon the value of 'n' in y(n).

(iii) Multiplication : x (k)and h(n — k) are then multiplied on sample to sample basis.

{iv) Summation : The product sequence obtained by multiplication of x (k)and hi{n — k) is
added over all values of ' &' to get value of y(n).

These operations will be more clear through the following example.

Ex. 2.7.1 Convolve the following two sequences x (n) and h(n) to get y(n)
.rin}={L I, 1, I}
_ hin)={2, 2}
Sol. : Here upward arrow (T) is not shown in x(n) as well as h(n) means, the first sample in
the sequence is o™ sample. Thus the sample values are :
x(k=10) =
xik=1)
x(k=2)
x(k=3)
and hik =0)
hik=1) =2
The convolution of x(n) and h(n) is given by equation 2.7.15 as,
y(n) = 3 x(k)h(n-k) o (27.15 (a))

k= =

1
1
1
1
2

I}

for n =0, the above equation gives o™ sample of y(n) ie.,

=]

n= 0, y(0) = X x(k)h(-k) - (2.7.16)

*:—ﬂ
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Here h{-k) is obtained by folding h(k) around k=0 Fig. 2.7.6 (a) shows x(k),
Fig. 2.7.6(b) shows h(k) and Fig. 2.7.6 (c) shows k(=k). The product x (k) h{-k) is obtained
by muliplying sequences of Fig. 2.7.6 (a) and Fig. 2.7.6 (c) sample to sample.

{a). Sequence (k)
x(k]
1 1 i i
e b A | k
-1 ||:| 1 2 3
(b} Sequence h{k)
hik] 2 2
I N
||:| 1
d}. Tufk) hi—)
{ﬂﬁ Falded hij=k) ik} hi—k] LJ&«*:EHLG
hi~k) I =2
F
(f). Emi) b1k}
{&]. hi—k) shified hi 1=k} k) W 1=K) = 42+
1o right by -4
ane sample 2 2 2| 2 qu3e3
&
T 1x0=0
i o — K —ir L - K
Il:} 1 2 2 -1 |1:| 1 2 3
{@)- hi—k) shiftad ki 2=k) mk) hef2-k] (k). Zefkh h2-k)
fo night by = (=2+2+0
o samples 2 2 3 2 =4
| DR U i
o1 2 3 oo+ 2 3
{11. hi—k) shiftad (). Tl hi3—k)
ke right by hi{3-k) x(k) hi3-k) =4
three samplas ¥ y
2 2 2 2
oI T
-1 6 1 2 3 =1 o 1 2 3
(k). b=k} shified hid-k] hik) hid—k} M Ixik} hid=k})
1o right by i 1 =2
four samplas 2 3 2
N SO I h
o1 2 3 4 g 1 & 3 4

Fig. 2.7.6 lllustration of linear convolution
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The product of sequence is shown in Fig. 2.7.6 (d).
The summation of samples of this product sequence gives y(0) i.e.,
y(0) = Y x(k)h(~-k)=0+2+0+0+0=2

over all y(0)=2
samples
Now let n =1 in equation 2.7.15 to determine value of y(1) i.e.,

n=1l y(l) = i x(kYR(1-K) e (2717
k==

Here k(1 - k) can be written as k |—(k —1)|. This is nothing but k (—k) shifted to right by

one sample. This shifted sequence h(l-k) is shown in Fig. 2.7.6 (¢). The product sequence

x(kYh(l-k) is obtained by multiplying x (k) of Fig. 2.7.6 (a) and h(l-k) of Fig. 2.7.6 (¢)

sample to sample. This product sequence is shown in Fig. 2.7.6 (f). The summation of samples
of this prodoct sequence gives y (1) ie.,

yh = Y x(k)h(1-k)=0+2+2+040=4

“'“,,ﬁ’ '"f, yil)=4

Now let n =2 in equation 2.7.15 to determine value of y(2) ie.,

n=21=> y(2) = E x(k)h(2-k) - (2.7.18)
k= =m
Here h(2 - k) can be written as h [—{k —2}]. This is nothing but sequence k(- k) shifted
to right by two samples. This delayed sequence is shown in Fig. 2.7.6 (g). The product
sequence x (k) h(2- k) is obtained by multiplying x (k) of Fig. 2.7.6 (a) and h {2 - k) of Fig.
2.7.6 (g) sample to sample. This product sequence is shown in Fig. 2.7.6 (h). The summation
of the samples of this product sequence gives y(2) [see equation 2.7.18]. i.e.,

yi2y = Y x(Mh(2-k)=0+0+2+2+0=4

aver all }'{1}=4
samples
Similarly for n =3, equation 2.7.15 becomes,
-]
n=3= yi3) = 3 x(k)h(3-k)
b=

h{3=k) is obtained by shifting h(=k) to right by 3 samples. i.e. delaying by 3 samples.
Fig. 2.7.6 (i) shows k(3 - k). The product sequence k(&) k(3 -k) is shown in Fig. 2.7.6 (j).
Hence
Y3 = Y x(B)h(3-k)=0+040+2+2=4
M y(3)=4
This is not the last sample of y(n). With n =4 in eguation 2.7.15 we get,
n=4= vid) = 3 x(k)h(4-Fk)
k=—m
hi4-k) is obtained by delaying or shifting h (=k) to night by four samples. This is shown
in Fig. 2.7.6 (k). The product sequence x (k) h(4 - k) is shown in Fig. 2.7.6 (I). Hence
- y4) = ¥ x(k)h(4-k)=0+0+0+0+2+0=2
i ,""I;""| " y(4)=2
MNow let us see whether we get y(5). That is with n =5 in equation 2.7.15 we




Hidden page



Digital Signal Processing 72 Discrete Time Signals & Systems

Now let us see whether we get some samples of vin) for n< 0. Let n=-1 in equation
2.7.13 we get,

[- <]

n=-1= vi-1) = 3 x(k)h(-1-k)
k==

Here h(-1-k) can be written as ﬁ[—{k+|]|].. This is nothing but sequence h(-k)

advanced by one sample. Such sequence can be obtained by shifting h{-k) of Fig. 2.7.6 (c)

left by one sample. This shifted sequence is shown in Fig. 2.7.7 (d). Here observe that

x(k)=0for k<0and h(-1-k)=0 for k>-1 Hence the product sequence x(kYh(-1-k) is
zero for all samples as shown in fig. 2.7.7 (e). Thus,

y(=1) = 3 x(kYh(-1-k)=0

ower ail _ —
pidi yins-1)=0

Hence all next samples of y{n) for n = —1 will be zero only.
Thus the sequence y(n) becomes as shown below :

_{...ll 02 4 4 4 20, l:l.}
vin) = 1

or it can also be writien as,

y(n) ={24,4,42}
Here note that we have used graphical sketches to evaluate convolution.

Comments :

1. Convolution involves folding, shifting, multuplication and summation operations as
discussed in this example.
2. If there are 'M' number of samples in x (n) and 'N' number of samples in A7n) ; then
the maximum number of samples in y(n) is equal to M + N -1
In this example M =4 and N =2 Hence number of samples in y(n) are 4+2-1=5 Thus
there are maximum five samples in v (n).

Ex. 2.7.2 Recompute the sequence y(na) in example 2.7.1 with the help of basic convolution

Equation.
Sol. : The given x (n)and i (n) are,

(0 =1 h{0) =2

(=1 hil) =2

x(2)=1

x(3)=1

The linear convolution of x (n)and h r_n.j is given by equation 2.7.15 as,

yin) = i x(k)hin-=k) . (2.7.19)
k=-m

Here clearly x (k) =10 for k< 0 in the given sequence. Hence lower limit on 'k" will be U in
above equation.

Similarly x{(k)=0 for £ >3 in the given sequence. Hence upper limit on ‘K" will be 3 in
above equation. Hence equation 2.7.19 can be written as,
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yin) = i x{kYhin—-k) e (2.7.20)
k=0

To determine range of 'n' in y(n) :

Let us represent lowest index of x (n) as n, ;, which is zero for given sequence.

Similarly let n,, be the highest index in x(m). For given sequence of x(n),n, =3
Similarly let lowest index in & (n) be ny,; which is zero for given h(n). And let ny, be the
highest index in h(n) ; which is 1 for given sequence of h(n).

[t A=
>
x(0) = 1 [
®1) =1 hiD) = 2
¥2) = 1 hii) = 2
X3J) =1 anﬁ‘l
A
Then lowest index of 'n' for y(n) is given as,
Ny =ngy+ny, =0+0=0 e (2.7.21)
And highest index of 'n' for y(a) is given as,
Myp =Ny +hyy =3+1=4 - (2.7.22)

Thus the range of n for y(n) will be 0= n < 4.
n =0 in equation 2.7.20 gives y(0) :

3 (k) h(-k)
k=0

=x(MA(0)+x (L h(-1)+x{(2)h(-2)+x(3) h(=-3)

=(lx2)+0+4+0+0 since h(-1)=h(-2)=h(-3)=0

= 2 y()=2
n=1 in equation 2.7.20 gives y(1):

v}

y(l) = i x(k)h(l-k)

k=0
=x(MhD+x (DA +x(2)h(-D+x(3)h{-2)
s{lx2)+(1=2)+0+0 since A{-1)=h(=2)=0
=2+2=4 y(l)=4
i =2 in equation 2.7.20 gives y(2) :

y@ = 3 x (O h@=k)

k=i
=x(MA(2)+x (DA +x(2) {0y +x(3) R (-1)
=0+(1%x2)+(1x2)+0 since h(2)=h(=1)=0
=4 ¥(2) =4
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n =3 in equation 2.7.20 gives y(3) :

¥(3) = i;l{t}lh{:!—ﬂ
k=10
=x(0)h(3)+x(DA(2)+x(2) A1) +x(3) h(0)
=0+0+(1x2)+(1x2) since h{3)=h(2)=0
=4 yi(3) =4
n =4 in equation 2.7.20 gives y(4) :

yi(d4) = ix{t]h{#—k}
k=10
=x(Dh(H+x(DA+x(2DA(2+x(3) A1)
=0+0+0+(1x2) since h(4)=h(3)=h(2)=0
=2 yi4)=
Thus the calculated sequence due to convolution of x (n)and k (n) is as follows :
yin) = {'14.4.4.2}
Observe that this sequence is similar to the one calculated in example 2.7.1.
Comments :

1. The range of 'n' in y(n) is given as,
Lowest index = sum of lowest indices of sequences to be convolved.
and Highest index = sum of highest indices of sequences to be convolved.

2. The given equation for y(n) as convolution of x (n)and h (n) is,
yin) = ¥ x(k)h(n-k) . (2.7.23)

k==m
If lowest index for x (k) is n, ; and highest index is n . Then,
x(k) =0 for k<n, ;andk>n,

Hence the product x (k) h (n - k) becomes zero for k< n, ; and k > n ;. Hence limits of k'
in equation 2.7.23 can be changed as n, ; Sk S n, ie,

Ay
yin) = i x(k)hi(n-k) . (2.7.24)
k=ng |
and {ﬂ.b.'l' +ﬂﬁ‘} -4 ﬂs(-ﬂ# +ﬂ-“)
This equation is then easily computable.
2.7.3 Properties of Convolution
In the last subsection we discussed convolution with the help of examples. Here we will
discuss some of the important properties of convolution.
1. Commutative properiy of convolution :

This property states that convolution is commutative operation. The linear convolution is
given by equation 2.7.15 as,
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[+ =]

y(n) = 3 x(k)h(n-k) .. (2.7.25)
k=—m
Let us define the new index of summation as,
m=n—k and hence k=n —m.
The limits of m will be same as k, i.e. (- o, @), Hence above equation becomes,

yin) = i x(n—=m)h(m)
m=—
Here observe that 'm' is the dummy index and it can be replaced by any character, the
meaning remains same. Hence replacing 'm' by 'k’ in the above equation we get,

y(n) = i xin=kyhik) e (2.7.26)
k=—a
This equation is alternate form of convolution given by equation 2.7.25. In the above
equation x (k) is folded and shifted, where as impulse response h (k) is unaltered. Equation
2.7.25 and equation 2.7.26 are the two equations for convolution representing the same outpul,
ie.,

yin) = i x(kyhin=-k)=x(n)*hin) | w (2.7.27)
k= =m

and yin) = i xin=k)h(k)=hi(n)=x(n) . (2.7.28)
k=-m=

Here we have used asterisk (+) to represent convolution of two sequence. It is standard
symbolic notation. From the above two equations of convolution it is clear that,
x(n)=h(n) =h(n)=x(n)l=vin) . (2.7.29)
Hence it is proved that linear convolution is commutative. Fig. 2.7.8 illustrates this
commutative property.

Excitation Unit sampbe Response
x(n) | response = hin) y(n) = x(n) « h{n)

Excitation Unit sample Response b
hin) "| response = x(n) yin) = hin) = x{n)

Fig. 2.7.8 lllustration of commutative property of linear convolution

2. Associative property of convolution :
The linear convolution has associative property which can be stated as :
[.rl:!t]'*ﬁl '[HII] *hy (n) =x iﬂl*[-ﬁl (n)* hy (n)] - (2.7.30)
Consider the left hand side of the above equation and let,
y1(n) =x(n)shy (n) .. (2.7.31)
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This means x (n) is applied to the system whose unit sample response is &y (n) and output
is denoted as yy (n). This output is applied to another system whn&e unit sample response is
fiy (n). Let the output of this system by y(n) ie.,

y(n) =y (n)*hy (n) . (2.7.32)

Putting for ¥, (n) from equation 2.7.31 in above equation,

yin) =|x(n)=h [ﬂ]]: hy (n)
This is the left hand side of equation 2.7.30. Such operation 15 illustrated in Fig. 2.7.9.

x(n) Unit sample | ¥4(n) | Unit sample | y(n)
response = hy(n) response = ha(n)

Fig. 2.7.9 Two linear shift invariant systems connected in cascade
Thus the left hand side of equation 2.7.30 equivalent to connecting two LTI systems in
cascade. The right hand side of equation 2.7.30 is,
y(n) = x(n)e[h (n)+hy (n)]
=x(n)=hin)

Here hin) = hy(n)=h, (n) .. (2.7.33)

This means x (n) is applied to the system whose unit sample response is the convolution
of two unit sample responses hy (n)and h; (n). Such system is indicated in Fig. 2.7.10. Thus
the unit sample response & (n) of this system is equivalent to convolution of k) (n)and h; (n).

And the operation performed by systems in Fig. 2.7.9 and Fig. 2.7.10 is same. This indicates
that convolution is associative.

x(n}) Llrnit msp&h y{n)
| h(n) = hy(n) = haln)

Fig. 2.7.10 The cascade connection of two systems can be
combined into one system and overall unit sample response is
equal to convolution of individual unit sample responses
If there are 'L’ number of LTI systems connected in cascade with unit sample responses of
hy (n), hy (n), by (m)....hy (n); then the overall unit sample response is,
hin) = hy(n)=h; (n)why(n)....xh; (n) e (2.7.34)
This also indicates that a LTI system can be decomposed into cascade connection of
systems and their unit sample responses are related by above equation,
3. Distributive property of convolution :
The linear convolution satisfies distributive property, which is stated as,
x{n}t[hl (n)+h, {nj] =x(n)shy (r)+x(n)shy(n) . (2.7.35)
Consider the right handside of above equation, in which let,
yi(n) =x{n)=h;(n)
and ¥p{n) =x(n)=h;(n)
And right handside of equation 2.7.35 is equal to y, (n) + y5 (n). This means there are two
LTI systems excited by same input x(na) and their outputs are added. This operation is
illustrated in Fig. 2.7.11 (a).
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hy(n)

xin) {m}

yin) = LN = hyin) + i) —2

ha(n)
: Fig. 2.7.11 (b) An equivalent LTI system of
Fig. 2.7.11 (a). For parallel connection of
Fig. 2.7.11 (a) Two Individual LTI
systems applied by same input. Fig. 2.7.11(a), hy(n)and h; (n) are added in

representing RHS of equation 2.7.35  this system.

Observe that it is the parallel connection of two systems. The unit sample response of the
overall system is equal to sum of & (n)and h, (n) ie.
h(n) = hy(n)+hy (n) . (27.36)
Hence output of such system is,
y{n) = x(n)=h(n)
= x(n)*[h; (n) + hy (n)] putting h(n) from equation 2.7.36
This 1s the left hand side of equation 2.7.35. Thus the overall unit sample response is
obtained by adding individual unit sample responses. Fig. 2.7.11 (b) illustrates this operation.
Thus it is possible to decompose a complex system into parallel connection of small and
simplified systems, ie.,
hin) = hy(n)+hy (n)+hyin)+...+hg (n)

= t h;- (m) v (2.7.37)
i=1
Here h(n) is the unit sample response of complex system and hy (n), by (n), ks (n),
... by (n) are the unit sample responses of individual parallel connected subsystems.

2.7.4 Causality of LTI Systems

Earlier we have defined causality property of the systems. The output of the causal system
depends only upon the present and past inputs. For example, the output of the causal system at
n=ny depends only upon inpuis x(n) for n<ny This condition for cauvsality can be
expressed in terms of unit sample response hin) for the LTI systems. The output y(m) is
given as convolution of k (n)and x (r) for LTI systems.

vin) = i hik)x(n—k) from equation 2.7.28

k==m

Al n =ng, the output y (ng) will be,

y(ng) = 3 h(k)x(ng-k) - (2.7.38)
l-—-:l:i
o
Let us rearrange the E in the above equation for the values of £ 2 0and £< 0 in two
b=—m .

separate terms as follows :
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ying) = zﬁ{k]x{ng-k)-i- i hikyx(ng=k)
k=0

k=g
Let us expand the terms of summation in the above equation,
ying) =[R{(0)x(ng)+h{l)x(ng -D+h(2)xing -2)+...]
+[ﬁ{—l].: (ng +1)+h(-2)x(ng +2)+h (-3 x(ng +3) +]
Here x(mg) is present input and x(mg —1),x(mg —2)... eic are past inputs. And
x(ng +1)x(ng +2),x(ng +3), ... etc are the future inputs. We know that the output of
system at n =n; depends upon the inputs for n < ny. Hence for causality,
hi(=1) = h(-2)=h(-3)....=0
This is because x{ng +l}.x{nﬂ + 2}, etc need not be zero compulsorily, since they are
inputs. But h(n) is the unit sample response of the system. In other words, it is the
characteristic of the system. Hence for the system to be causal,
hin) =0 for n<0 for causal system
We know that, hin) = T[8(n)]
That is, h(n) is the unit sample response of the system for unit sample & (n) applied at
n =0. Hence for the system to be causal, k(n) =0 for n< (L Thus this condition is two fold for
causality. Hence we can state,
A LTI system is causal if and only if
hin) =0 for n<0 e (2.7.39)
This is the necessary and sufficient condition for causalty of the system.
The convolution of x (n)and k (n) is given as,

y(n) = 3 hik)x(n-k)

k-l--l\:l:\‘

For the causal LTI system, h(n)=0 for n<(. Hence h(k)=0 for k<0 in the above
equation. This is just the change of index from 'n' to 'k’. Hence the convolution equation for
causal LTI system becomes,

]
y(n)y = 3 h(k)x(n—-k) - (2.7.40)
k=0
Here let us change the index as,
m=n-k hence k=n-m

when k=10, m=n
and when k = o, Mm=n-—om=—w
Hence equation 2.7.40 becomes,
y(n) = gfl{n—m]r{m}
m=n

This equation can also be written simply as,
y(n) = f: x(m)h(n—m)
e =30

In the above equation replacing the index 'm' by 'k’ does not change the meaning. Here we
are doing it for consistent notations. Hence above equation becomes,
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y¥in) = i x(k)hin-k) e (2.7.41)
f==-m

When the sequence x (n)=0. For n<{, then it is called causal sequence. Hence x (k) =0
for k< (. Hence above equation becomes,

ym) = 3 x(k)h(n-k) . (2742)
k=0
This is the equation for linear convolution. It gives output of the causal LTI system for
causal input sequence. The causality of LTI system is imposed by unit sample response h(n)
and input sequence x (n) is also causal. Hence the limits of summation in Z are changed
from (-oo, @) to (0, n). In the above equation y(n)=0 for n< 0, hence the response of causal
LTI system is also causal for causal input sequence.

2.7.5 Stability of LTI Systems

We have defined the stability criteria for systems earlier. The system is said to be stable if
it produces bounded output for every bounded input. In this section we will derive the stability
criteria for Linear Time Invariant (LTI) systems in terms of their unit sample response. The
linear convolution is given as,

¥in) = 3 h(k)x(n-k)

k=s=m

Taking the absolute value of both the sides,

b'{”:i = t_i hl{t}:{n-k+

The absolute value of the total sum is always less than or equal to sum of the absolute
values of individual terms. Hence right hand side of the above equation can be written as,

yon) € 3[R0 fetn - k) . (2.7.43)
k==
If the input sequence x (n) is bounded, then there exists a finite number M, , such that
e (n) s M, <o . (2.7.44)

Putting this condition for bounded input in equation 2.7.43 we get,

pw| <M, 3 ik

*’.—!l:l

Here M, is the finite number. Then for the L'.'ll'uﬂ to be finite in the above equation, the

condition is, .
5 oy <
k=—m=m
With this condition, the sum of impulse response is finite and hence the output Lv[uﬂL is
also finite, Thus bounded input x (n) produces bounded output y(n) in the LTI system only if,

i (k) < e .. (2.7.45)

k===
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When this condition is satisfied, the system will be stable. The above condition states that
the LTI system is stable if its unit sample response is absolutely summable. This is the
necessary and sufficient condition for the stability of LTI system.

Ex.2.7.3 Determine the range of values ‘a’ and ‘b, for which the LTI system with impulse

FESPOnSE
] =
hny =9 "0 . (27.46)
b, n<0
is stable.
' [Dec - 99]
Sol. : The condition for stability is given by equation 2.7.45 as,
> k) < e
k = =

Splitting the summation according to equation 2.7.46 and putting for h(n) in above
equation we get,

i b" . (2.7.47)
== a0 R=—3
Let us consider the summation terms in above equation separately. The first summation
can be written as,
= =1+|q+ia1|+]a3|+ .......

This is a standard geometric series and it converges (o ﬁ if |aj= L If |a>1 the series

does not converge and it bl.'.ﬂDIIH:E unstablﬂ. Thus,

= —. if |.:ﬂ,{l - (2.7.48)
Now let us mnsider thc sccond summation in equation 2.7.47. It can be rearranged as
follows :
= L
A=—a n=| B"
1 1 | 1
=t —— f..

S I PO . (27.49)
ol | ol [o7]
The part inside square brackets in above equation is the geometnic senes and it converges
to, 1 = if |::?|-:1 i.e. | b|>L Hence equation 2.7.49 becomes,

I =
| &

-
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3

1 1

M s o —— if|b]>1
n=—a i'bl l—l ' |
1&|
R
L if|b|=1 . (2.7.50)
"8l

Putting the values of summations oblained in the above equation and equation 2.7.48 in
equation 2.7.47 we get,

I
H“Z_m| (n)| —m+m—1uf|n1~clt:|b]

Thus the geometric series converges if |a<l<|bl Thus the system will be stable if
ld<1<|bl
Ex.2.74 Determine the range of values of the parameter a' for which the linear time
invarianl svstem with impulse response h{n) is stable.
hiny=a", nz0andn even
=0 otherwise [Dec - 99]

Sol. : The condition for stability is given by equation 2.7.45 as,
2 hk) <
k=-m
Putting the given value of k() in above eguation,

Y ) = ¥ |a

H=—e n=10
i fVeR

Here "n' takes only even values. Let us put n = 2m. Hence m takes values of 0,1, 23, ...
and 'n' will take values of 0, 2, 4, 6, ... =, Then above equation becomes,

,.,:E;m'h{”l mgn |r]'"|
=¥ ja

m=10

=|+1ﬂ+1ﬂf44ﬂﬁ+ .......

This is a geometric series and it converges to H%JI if |ag<L If the series does not
converges, then the system becomes unstable. Thus the given system is stable if |gl< 1
Ex.2.7.5 The convolution of x (n)and h(n) is given as,
y(n) =x(n)*hin)
Then show thar

Som= 3 xm ¥ oam .. (27.51)

ne - o L = fm=ad
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Sol. : The linear convolution of x (n)and h(n) is given by equation 2.7.15 as,
vim) = ¥ x(k)h(n—k)

k= =an

Let us take summation of y(n) from —= o + = ie,

i‘ yin) = i i xikyhin=k)

R=— a=-—m k=-—=
= 3 x(k) ¥ hin-k)
k= =m L =

Let n—&k=m in second summation ferm in above equation. Since limits for 'm' are
(=90, ), the limits for ' m' will also be (- o, ). Hence above equation becomes,

Y owimy= ¥ x(k) 2 him)
B = -0 k= =g L -

In the above equation 'k" and "m' are just indices and any alphabet like 'n’ can be used.
Thus equation 2.7.51 is proved. The above equation indicates that the sum of all values of
y(n) is equal to product of sums of x (n)and h{r). Hence equation 2.7.5] can also be written

as follows :
Yyv=3xYh e (2.7.52)

Here observe that indices are avoided.
To verify equation 2.7.52 for the result obtained in example 2.7.2 :
Refer to example 2.7.2. In this example x (n)and h (n} are given as,
x(n) ={LL1L1}
hin) = %2. EL
And y(n) is calculated in example 2.7.2 as,
yin) = {141 4,4, 2}
Y xin) =1+1+1+1=4
Y hin) =2+2=4
and E}'{n} =2+4+4+4+2=16
According to equation 2.7.52,

Z.J" =Zx-Zﬁ=4x4
= 16

Which is same as calculated above. Thus this eguation can be used as a 'check' to verify
the results of convolution,

Ex.2.7.6 Easy method to compute convolution
The sequences x (n) and h(n) are given as follows :
x(n)={L 1 0,1, 1}
‘T
hin)y={L-2,-3,4
L-2-34)

Compute the convolution of these two sequences
yin) =x(n)=xh(n)
[Dec - 99]
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Sol. : This method is relatively easy and is based on the technique similar to multiplication.
The two sequences are multiplied as we multiply multiple digit numbers. The result of this

multiplication 15 nothing but the convolution of two sequences. The complete procedure is
illustrated below in Fig. 2.7.12.

#n) = 1 1 0 1 1

Maj= =« 1 -2 -3 4
Multipliuaﬁnn.-"f' '

of x{n} & hin}

4 4 0 4 4 = "4 multiplies samples in x{n}

=3 =3 0 =3 -3=x=— Thisdigilis marked zaro or
feft as usual in multiplication.
=3 multiplies samples in xin)

=2 =2 0 =2 -=2%yx =x
L—— These two digits are considerad
zero as usual in multiplication.

~2' multiplies samples in x(n)

1 1 o 1 1 L S
"-——-.,.,.—l'
L——— These three digits are considered
Zero as usual in multiplication.
“1" multiplies samples in x(n)
¥{nj«hinj—=1 -1 -5 2 3 -5 1 4=— Thesevalves are oblained by
b ]

-

g adding all digits in their
Total digits before T are respective columns,
equal to sum of digits in W' are considered as zemns.
x(n) & hin) before T . La.

2 + 3 = 5 digits.

Fig. 2.7.12 Computation of convolution using multiplication
In the sequence x(n) observe that there are ‘2 digits before the zero mark T arrow.
Similarly there are '3 digits before the zero mark T arrow in h(n). Hence there will be
243=5 digits before the zero mark T amow in v{m). Thus the result of convolution is

obtained in Fig. 2.7.12 as,
L-L-523-514
y(n) = { ? } - (2.2:33)

To verify the result obtained.

The result obrained in thiz example can be verified by using equation 2.7.52 and also by
using basic convolution equation.

(i} To verify result by equarion 2.7.52 :
Equanon 2.7.52 states that,

Yy=2x-2h e (27.54)
From equation 2.7.53 we have v(n) as,

yin) = {l.—L—i 23, -3 4}

Yy =1-1-5+2+3-5+1+4=0 o (27.55)
x(n)and h(n) are given as,

x(n) = {L10.11}
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. Y ox =1+140+1+1=4
and hin) = {l.-l-—lﬂf}
Z h =1-2=-3+4=0
Putting values in equation 2.7.54 we have,
Sy=YeXh
=4x0
= () which is same as that obtained in equation 2.7.55

Thus Z ¥y = Z _r-z h is proved.
{ii) To verifv result using v(n)= i x(k)y-hin=k):

k=—m
Here let us compute the convolution using the basic convolution equation. The given
SEQUENCES are

x(n)={L10.11}
T

hin)={L,-2-3 4}
T

and

These two séequeénces can also be wntlén as,

x(=2)=1 hi=3) =1
x{=I)=1 h(=2) = =2
(=04 hi-1) =-3
x(l)=1 hil) =4
x(2)=1

From above we can wrile the following :
Lowest index of x(n) = n,; =-2
Highest index of x (n)=n, , =2
Lowest index of h(n) = ny; =-3
and Highest index of h(nl=n,, =0
The convolution equation is given by equation 2.7.24 as,

Ay
yiny= 3, x(k)-h(n—k) and (ng; +ny )sn<(n,, +hyy) .. (2.7.56)

E=nRg |

Putting values of highest and lowest indices in above equation we get,

yin) = i x(kYhin-4k) and (-2-3)=n=(2+0)

k==3

i x{kyh{n=k) and -=5Zn<2 o (2.7.5T)
k=-2

e, yin)

Mow let us compute y(a) for the complete range.



Digital Signal Processing 85 Discrete Time Signals & Systems

n=-5 in equation 2.7.57 gives y(-5) :

vi(-3) = i x(kYh(=5-k)
ka2

=sx(=2)A(=-3)+x(=h(=d)+x(MDh(=5)+x{(Dh(=6)+x(2)h(=T)
s(Ixl)+(1=xM+(0=x0)+{1=0)+{1x0)
Since h(-4)=h(-5)=h(-6)=h(-7)=0
=1+0+0+0+0
=1 y(-3)=1
n =—4 in equation 2.7.57 gives y(—4) :

) = 3 x (k) h(~4-k)
bm=3
=x(=2) (=) +x (- h(-3)+x (N h{—4) +x (1) h(-5)+x (2) h(-6)
=(Ix=2)+(Ix1)+0+0+0, since h(—4)=h({-5)=h(-6)=0

=-24+1+0+0+0
= -1 V(4 =-1
n =-3 in equation 2.7.57 gives y(-3) :
¥y(=3) = ﬁ x(kYh(=3-k)
k=-12
= x(-Dh(-D+x(-Dh{(-D+x (D h(-3)+x (D h{-D+x(2)h{-5)
=(lx-3)+{1x-2)+(0x1)+0+0, since A{-n)=h(-5)=0
=-3=-2+0+0+0
= -5 y(=3)y=-3
n =-2 in equation 2.7.57 gives y(-2):
y(-2) = )f x(kyh(-2-k)
ke-2
=x(=2) {0 +x(=Dh (-1 +x (A=) +x(Dh{-3)+x(2)h(-4)
=(1x4)+(1x=3)+(0x=-2)+(1x1)+0, since h{—4)=0
=4-3+0+1+0
=2 ¥(=2)=2

n =-1 in equation 2.7.57 gives y(-1) :
yi=1) = ﬁ X(kYh(=1-k)
k=-12
=x(-Dh()+x (=D A0)+x(0) h(-1)+x (1) h (-2} +x (2} h(-3)
=0+({1xd)+{0x=3)+(1x=2)+{1x1), since h(l)=0
=0+4+0-2+1
=3 y(=-1)=3




Digital Signal Processing 86 Discrete Time Signals & Systems

n =0 in equation 2.7.57 gives y(0) :
y = 3 x(k)h(-k)

km=3
=x (- h(2D+x(-DAD+x (A0 +x(DA(-1)+x(2)h(=-2)
=0+0+(0x4)+(1x=3)+(1x=2), since h(D=h()=0
=04+0+0=3=2
= =5 y{0)=-5
n =1 in equation 2,7.57 gives y(l1) :

¥y = i x{kyh{l=k)
l::—E
=x (-2 h (N +x(-Dh{(D+x{(OAD+x (DA +x (2R (-1
=0+04+0+(1=d)+(lx=3), since h(3)=h(2)=h{l)=0
D4+0+04+4=3
=1 yily=1
n =2 in equation 2.7.57 gives y(2) :

vi2) = i x(kyh(2-k)
k==13
=x(=2)h{d)+x{(-Dh(N+x(MA(D+x (D A(D+x{2}R(0)
=0+0+0+0+(1=x4), since A(d)=hi3)=h(2)=h(l1=0
=0+0+0+0+4

Thus the sequence y(n) obtained using basic computations of convolution is as follows :
}'{H}={L—L*i 2 3.—;, 1 4} L (27.58)

The sequence y(n) given above is exactly same as that obtained in equation 2.7.53. Thus
the results are verified.

Ex.2.7.7 Another easy method to compute convolution.
This example illustrates another easy method to compute convolution.,

x(n)={L 1L 0, L1} and h(n)={1,-2,-3,4}
t 1

of example 2.7.6 are considered. Somerimes this method is also called tabulation

methad.
Sol. : The values of x (n)and h(n) can be written as follows :
x(-2)=1 hi=3) =1
x(=1)=1 hi-2) = -2
x(M=0 + h(-1) =-3
x(l)=1 hid) =4 —

x(2)=1
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The above values of x (n)and h(n) are tabulated as shown below in Fig. 2.7.13.
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Thus as shown in above figure k({-3), h (=2}, h (-1)and i (0), form the columns of table,
And x(=2), x (=1), x (0), x (1), x (2) form the rows of the table. In the table the multiplications
of x(n)and h(n) are written as shown. Then the multiplications are separated diagonally as
shown by dotted lines in Fig. 2.7.13.

From given sequences x (n)and h (n) we have,

lowest index of x(n)=n, , =-12

lowest index of hin)= ny; =-13

Hence lowest index of y(n)=n, =n, ;) +ny; =-2~3

SORG = -5

Thus first element in y(n) will be ;E—S}. This element is equal to top left diagonal array.

It contains only one multiplication. i.e.,
y(=3) = x(=2)h(=3)

The other diagonal arrays are sucessively y{-4), y(-3), y(-2).... as shown in Fig. 2.7.13.

Finally the last element in the array is y(2) and it is the bottom right element in table. ie.,

y(2) =x(2)h(0)
Let us put values in table of Fig. 2.7.13. Such table is shown below in Fig. 2.7.14.

yi-5)=1
yi—4) = -241 = 1

W-3)=-3-240 = -5

y=2) = 434041 = 2

r"_.. ..-"'r .-""r /
- - -
1 1x151 " 1x=2=5=2 »"1x=3=2=3 _»"1x4=
e - -

- - -

- L - o yi-1)=4+0-2+1=3
o - - - /
- - - -
- - - -
- -
s -~ - T ¥i0)=0-3-2=-5
- - - -
- - - -
- - - -
- - _.-"F - ‘/—
-
Py - - - (1) =43 =1
- a# - &
o lI‘_r.-- o o
a~ L - -
- o - -

1P Axt=1 " Tw2m2, - 1x323,.- 1244 .. v(2) = 4

Fig. 2.7.14 Computation of convolution
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Thus the computed sequence is,
y(m)={L-1-523,-514}
Tn.

This sequence is exactly similat to that calculated in last example given by equation
2.7.58. Thus tabulation method and multiplication methods are easier methods for computation
of convolution.

Comments :

1. Convolution can be computed easily by tabulation and multiplication methods.

2. If y(n)=x(n)*h(n), then result of convolution satisfies Z}'=Z:-E h. This
equation can be used to check correciness of the resul.

3. After equation 2.7.57, y(=3),¥(=4),.... eic are calculated using basic convolution
equation. Observe tabulation of multiplications and equations for y({=3), y(=4),
y{=3), ... etc in Fig. 2.7.13 carefully. It shows that multiplications and summations are
aranged in specific format in the table. This makes the computations easy.

4, Observe the multiplication method in Fig. 2.7.12 carefully. Here the summations are
actually summations in basic convolution computation.

Thus tabulation and multiplication techniques are derived from basic convolution method

only. They provide easier and faster computations of convolution.

Ex.2.7.8 Prove and explain graphically the difference between the relations :
,r{n}ﬁ[nv—nﬂ] =x(nu}
and x[nj*ﬁ[n—nu] =.r|:n—r|u] [Dec - 99]
Sol. : (i) Interpretation of x (m)& (n -2y ) =x(my ) :

The discussion of this expression is given in section 2.7.1. Let us consider some sequence
for x(n). Le.,

x{n}={l 1, 311—1 I} L (27.59)

Here, x(=2) =12

x(=1) =1

() =3

x(l) ==2

x(2) =2
This signal is shown graphically in Fig. 2.7.15 {(a).
We know that,

= {i = [}
8(n) =1 for n L By definition
= for m=0 J

This is a unit sample sequence. We have shown in equation 2.7.3 that the & (n) function
delayed by n, samples is given as,

E{u-nu} =] for n=ny
=0 for n=ng

e (2.7.60)
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‘al. The sequence
x{n} having
samples A5

sketched

ib). Unil sample
SayUence
delayed
samples

(). Mulliplication
of x(n) of Fig.(a)
& Bin—np)
of Fig.(b).
The regult
i %[Ny}

x(n)
'
xinp) with ng = 2
ig
2 l
2
.1
|
I n
=2 =1 0 2
-2
B(n-ng)
Herang =2
U
. L L £ *
2 -1 0] 1 2 :
x(n) {n—ng] = x{ny)
Here ny = 2
2
L (Mg}
O O 13- 1 -
2 1 0] 1z

Fig. 2.7.15 Nlustration of x (n) 6(n-ng)=x (ng)

The skeich of & {n - "I'.I)

for ny =2 samples is shown in Fig. 2.7.15 (b). When we

multiply x {nland&(u —.r:.u,] we get all samples of zero values except at n = np. Thus,
x(n)-B(n—ng) =x(ng)-1 since d(n-ny)=I
s x(n)-B(n-ng) = x(ng)
And remaining all samples in the product will be zero. This is shown in Fig. 2.7.15 (c).
{ii) Interpretation af‘.r{n}tﬁfn‘ "‘l}] =r(n —nu} :
This can be best explained with the help of an example. For example consider,
x(n)={L2-1}
T..

xin) =

and rngy =1 Hence

Let us represent.

E{H—uu} =] for n=ng =1

=0 for n=2n,iel

fiin) =tﬁ[.rr—u,:,} with ng =1

By definition linear convolulion 15 given as,
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x(m)sB(n-ng) =xin)ehin) Hew hin)=d(n-ny)

L

= 3} xlk)-hin-4) - A27.61)
[ R
And now we have x (k)and b (L) as
x(k==-1) =1
x{k=0) =2
x(k=1) =-1
And hik) =8(n-ng)=1 for m=nyien=I

e for k=1since k=n
= 0 elsewhere
Thus, hik==1) =0
hik=0) =0
hik=1) =1 and h{k=2)=0 and so on.

The sketches of sequences x (k)and h (k) as given above are shown in Fig. 2.7.1€ (a) and
Fig. 2.7.16 (b) repectively. The convelution equation of equation 2.7.61 can be written as,

yin) = i x(k)hin-Kk) . (2.7.62)
*:—EI:-

Here y(n) is denoted as convolution of x (n)and k (n)

n=0 = y(0 = ¥ x(kYhi-k)
k= =m
Thus y{0) is equal to sum of multiplications of x(k)and h{-k). h{-k) is the folded
sequence and shown in Fig. 2.7.16 {(c). The product seguence x(k)h({-k) is shown in
Fig. 2.7.16(d). From Fig. 2.7.16 (d) it is clear that,

y(0) = ¥ x(k)h(-k)=1+0+0=] yi) =1
over aill
sammples

n=1in eguation 2.7.62 gives,

yilh = ¥ x(kYhi(l-k)

I -
The sequence h({l-k) is shown in Fig. 2.7.16 (e). It is obtained by shifting h{-&) to
right side by one sample. The prodoct sequence x (k) h(l-k) is shown in Fig. 2.7.16 (f).
From Fig. 2.7.16(f),

yih = ¥ x(BYh(1-k)=0+24+0=2 y(l)=2
r.lurr.u'il'
) samples
Similarly from Fig. 2.7.16 (g) and Fig. 2.7.16 (h),
¥y = 3 x(k)h(2-k)=0+0-1=-] y(2)=-1
over aill

By putting n =3 it can be v:riﬁﬁar::ily that, there will be no overlap between sequences
xik)and h(3 - k). Hence product sequence x (k) (3 - k) will have all its samples zero. And
hence all values of y{n) will be zero for n 2 3.
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(a}. The ik}

seguance xik)
}:
1
? 1
k
=1 EI| &
-1
(b). The sequence  hik] = &n-ng), here ng = 1
Sir-ng) with o
fig = 1. This
SEJUENGE 5 1
as hik). T k
{ci. Folded k) ik} M) (). Exii) -]
- HE HTE] i = 1+0sl=1
=k},
1
? [ B k
-1 o 1
(o) hi-k)shified  hi1-k) ) (1. Zulk) hi1-k)
o right bry 4 I = De2e 3
B BB 1u2=2
1
Kk PR [ S—
=1 0O 1 =1 0 1
fig). Pk} shiftec hi2-k] = hid-8) (). Zx(k) hid—k)
- toright by : = 0401 = -4
By Saemplas
1
1
K
_1 ﬂ 1 & -|-1 ﬂ
=lwi®m=]

Fig. 2.7.16 lllustration of linear convolution of x (n) and &(n —ng ). Here x (n) is
represented as x (k) and 5(n-ny) is represented as h (k). ng =1
Similarly it can be verified easily that, for n =-L we have to shift h (-k) to left by one
sample. This sequence becomes h(-1-k). And there will be no overlap between samples of
x(k)and h({=1-k). Hence the product sequence x (k) h(—1-k) will have all its samples zero.
And hence all values of y(n) will be zero for n £ —1. Thus we obtained y(n) as,

yiny={L2 -1}
T

We know that y(n) is the convolution of x(n)and&(n—-ng). since h(n)=8(n-ny)
with ng =L Fig. 2.7.17 shows x (n)and y (n).

Please refer Fig. 2.7.17 on next page.

In the above figure observe x (n)and y (a) carefully. The sequence y(n) is basically x (n)
delayed by one sample (i.e. ng =1).

yin) = .r{n '"I:I} Here n; =11in Fig. 2.7.17 (b)
Since yin) = x{n}tﬁ{n - rl,;,}. We can wrile,
;{u}-a{nrnu) =x(n—nﬂ} o (2.7.63)
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(a) Sketch of %(n)
sequence x(n) I
2

1

n
-1 0 1 2
-1
(b) Sketch of ¥(n) = x(n) » &n-ng) = x{n=-ng)
x{n} « B{n—ng). 1
This sequence
is basically 2
x{n-ng) Here ng = 1
19
n

ﬂ l
-1

Fig. 2.7.17 Wustration of x (n) «&(n-ng) =x(n-ny)

Thus the convolution of any sequence with E{n —ng ) is equivalent to delay that sequence
by "ng' samples.

Ex.2.7.9 The impulse response of a linear time invariant system is
hin)={121-1}
,T

Find out the response of the system to the input signal
x{n}={l, 2,31}
1

Sol. : We know that output y(n) of the system is given as convolution of input x(n) and
impulse response h{n). ie., '
y(n) =x(n)eh(n)
Please refer Fig. 2.7.18 on next page.

Fig. 2.7.18 shows the convolution of x({n)and h(n) by the method of multiplication.
x(n)and h(n) are multiplied by the regular method. Observe that there are no samples in
x(n) before T arrow. There is one sample in A (n) before T arrow. Hence total number of

samples combinely due to h(n)and x (n) before T are (1+0=1) one. Hence there is one
sample before T arrow in y(n). Thus the result of convolution is,
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4
mn) = 1 2 1 =1
x(n) = 1 2 3 1

+
1=1=1 1w2=32 Tx1=1 1e{=1)=-1

d3=x1=3 3Ix2=6 Ix1=3 Ixi-1)=-3 :
2x1=22 2ul=4 2x1=2 2x(-1)=-2 E *
1x1=1 1x2=22 1x1=1 1x{=1)==1 X x x
1 Z+2=4 3+4+1=8 1+6+2-1=8 2+3-2=3 1-3=-2 -1

T

S F{n"=':1|‘|5| B| 3|_'2'|_1}
.T.

Fig. 2.7.18 Convolution of x (n) and h (n) to get y(n)
y¥im) ={|_4,3.3.3., -2 —1}
.Tu.

This is the required output sequence.

Ex.2.7.10 Prove that the convelution of any sequence with the unit sample sequence results in
the same sequence.

OR
xin)=d{n) =x(n) . (2.7.64)
R
x(myshin) =x(n) if hin)={1} .. (2.7.65)
Sol. : We know that convolution of x (n)and h(n) is given as,

xim=hin) = 3 x(k)hin-k)

.E:—':l:
Since convolution is commutative, above equation can be written as,
x(m*hin) = ¥ h(K)x(n-k) e (2.7.66)
E'——II-
1 ar k=0
hik) =8(k)=
(k) (k) {ﬂ if k=20

Hence the summation of equation 2.7.64 is evaluated only at & =0, 1.2,
x(n)ehin) = h(k)x(n—k)r=0

I-x(n-10)

xin)

x(n)eb(n)=x(n) if Ain)=5&(n)

Thus xin)=hin)
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Ex.2.7.11 Determine the convolution between x (n) and hin) as given below :

hin)=uin) and

. x(m)={112}

(i) -

(i) J.'[rlfl={1.l.15}
T

i) _rl[ﬂ}={4.TL3. 21

And hence derermine the generalized relation for convolution of w(n) with finite
duration sequence.

Sol. : (i) Consider the first sequence,

I{E}E{l, 1, 2}
T
Convolution is given as,
Ea
yiny = 3 x(k)hin—k)
k=-m=
Here x (k) has the values from 0 to 2. Hence above equation becomes,
vin) = i x(k)hin-k) ... (2.7.67)
k=1

Since n,; as well as n;; are zero, the lowest index for y(n) will be n ;=n,; +n,, =0
Hence, n =0 in equation 2.7.67 gives, '

y{0) = i xi{kyYhia-£k)
k=10
We know that hi{n)=u(n). Hence h{k)=u(k) and hence h(-k) 15 obtained by folding
ui{k) x({k)and h(=k) are shown in Fig. 2.7.19 (a) and Fig. 2.7.19 (¢) respectively. Hence
v {0} becomes,
y(0) = i x{k)hi=k)=1 .. (2.7.68 (a))

k=1

Similarly n =1 in equation 2.7.67 becomes,

yil) = i x(k)h(l=k)
k=10
hil=k) is obtained by shifting & (=k) to nght by one sample. Fig. 2.7.19 (d) shows the
sketch of k{1l - k). From Fig. 2.7.19 {a) and Fig. 2.7.19 (d) it is clear that,

2
y(y = 2 x(kYh(l-k)=2 ... (2.7.68 (b))
k=10
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{a). The
sequence xfk) - )
2
|
? ;
1 2
(b).The sequence -
hik) = upk) e, 0 - ulk)
unit sequancs
step 1 1 1 1
R A
ol 1+ 2z 3
ic). The seguence _ = Z
hik) folded hi=k) WOI=E k) hi-4)
0 gethi=k) = (1= V(1 x 0)#(2 = Q)
? ? -T = 1+0+0= 1
. . B
= -2 10 1 2
(9). The 2
sequence hi-k) h{1-%) wi1) % E 0 x(k) hi1-k)
delayed by
ona sample 4 3 . q ‘ﬁ : ]"'ﬁ 1)#(2 = 0)
togeth(ik) $ 9 o ; +
3 -2 10 1 2 "
g). The 2
saql.Eanna hi 1-k) hi2-k) yi2) uE= o (k) h{2=k)
:.:33 “m:k; ; \ . . 9 q flli:|1+:+1 }-F_QL: 11+H2 = 1)
to gat hi2—k) = 14142 = _
V.99 999% n
-3 2 10 1 2
(. The 2
sequence h(2-k) hl3=k) AL RN
delayed
'”"“:““;:' 101 111 :tﬂz}:{r THz=1)
P 29299999
i 3 2 10 1 2 3 )
{g). The i d—k . 2
saquence h{3—k) W=k) yid) E:u (k) [ d=k)
one sampie = (1% (1 x {2 x 1)
1 1 1 T 1 1 1 =1+1+2=4
SR L 2 I 2 2 A
) 3 2 10 1 2 3 f

Fig. 2.7.19 Corvolution of finite length x (n) with unit step sequence u (n)
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Similarly from Fig. 2.7.19 other values of y(n) are obtained as, il

¥(2) =4 ... (2.7.68 (c))
yi3) =4 o (2.7.68 (d)
¥i4) =4 ... and so on.

Thus y(n) 15 an infinite sequence.

By careful observation of equation 2.7.68 (a), equation 2.7.6%8 (b), equation 2.7.68 (c),
equation 2.7.68 (d) etc we can derive the generalized relation for y (A} as,

yin) =u(n)+uin-11+2u(n-2) . [2.7.69)
This can be verified easily as follows : '
y(0) = u(0) +u{=1)+2u(=2), with n = 0'in equation 2.7.69
Here u(0) =1, w(-l)su(-2)=0, Hence y(()=1
y{)=u(l)+u{0)+2u(-1), with n=1in equation 2.7.69
Here u(l)=u(0)=1 and u(-1)=0, Hence y(l)=1+1=2
Y{2)=u(2)+u(l)+2u{0), with n=2in equation 2.7.69
Here u(2)=u(l)=u(0)=1. Hence vi2)=1+1+2=4

Thus equation 2.7.69 is the generalized equation for convolution. This equation can be
generalized further. We know that,

x{(0) =1, x(h=1 and x(2)=2
Hence equation 2.7.69 can be written as,
yin) =x{(Muin)+x(Dun-D+x{(Duin-2) e (2.7.70)

This 15 more generalized form of convolution of sequence x (n) with w(n). It can be
extended further as,

yi)=x(Muin)+x(Duin-D+x(2uin-20+x(3)u(n-3)+..... - (2.7.71)
(ii) y(n)=x(n) »u(n)

Here x(n)={L125}
T

From equation 2.7.71 we can write the sequence y (n) quickly as,
yin) =un)+uln-)+2uin-2)+5u{n-3)
(lii)y(n)=x(n)=un)

Here x{::}:{g]{j,:}

Here observe that there is one sample before 0" sample. Hence equation 2.7.71 can be
modified as follows :

ym)=x{-Duin+D+x{(Duin)+x(Dun-D+x(Du{n=2)+... o (2.7.72)

In the above equation observe that the term x({=Dju{n +1) is added to in corporate the
sample x (—1). Putting the values of sequence x (n) in above equation we get,

yin) =du(n+)+uin)+3uin-1)+2u(n=-12)

The comectness of above equation can be wverified easily by actually camying out
convolution for first few samples of y(n) Egquation 2.7.72 can be generalized further as,

yin)= . +x(=3)uin+3)+x(-Dun+2)+x(-Duin+1)+x (0 wun)

+x(Duin=-0D+x(Du{n-2)+..... {.1.'.".?3}
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Ex.2.7.12 The impulse response of the relaxed LTI system is given as,

hin) =a" u(n) and |d<1
Determine the response of this system if it is excited by unit step seguence.
Sol. : Here excitation is unit step sequence, means,
x(n) =uln)
And we have to determine response y(n). ie.,
yin) =x(n)=h(n)

Here we have to perform convolution of unit step sequence with another infinite duration
_sequence. This is because hin)=a" u(n) is infinite duration sequence. In the previous
example we have derived the generalized expression for convolution of unit step sequence
with finite duration sequence. This expression is given by equation 2.7.73 i.e,,

vin)=....+x(-3un+3)+x(=Duin+)+x(=Duin+D+x{(0uin)

+x(Duin-D+x(2uln-2)+....

In this eguation input is x (n)and h(n)=u(n) But if x (n)=u{n), then above equation
can be modofied easily by commutative property of convolution. i.e.,

yin)=.o.+h(-Nun+3)+h(-Duln+2)+h({-Duln+1+h{Duin)

+hiDu(n-D+h(Duin-2)+.... _ e (2.7.74)

Even though we have derived equation 2.7.73 and above equation for finite duration

sequences, they can be used for infinite duration sequencex as well.

In this example x(n)=u(n) and
hin) =g"u{;ﬂ={;- for mz0

for m<0

The individual samples of b (n) can be writlen as,

(D) =1

hi(l) =a

h(2) =a°

h(3) =a’ ... and so on.
Le. h(n}={::ﬂ. ﬂz,na,a"‘. ..... }

Thus A(n) is infinite duration sequence. The convolution of any sequence with unit step
sequence is given by equation 2.7.73 and equation 2.7.74. Here putting individual sample
values of h(n) in equation 2.7.74 we get,

vir)=ul{n)+auin —l}+2u{n -2) +a’uin -3+.... . (2.7.75)

This is the result of convolution. Let us compute sequence for y(a). Putting n=0 in
above equation we get,

yil) = ul[lfﬂl-nu.nl[-—l}~Hr2 ul{-2]|+.a3 u(=3)+...
=1 since w(0)=landu(-1)=u(-2)=....=0
Putting n =1 in equation 2.7.73,
yi(l) =ul(l)+au IZIZI'}+:11 u(=D+a’ u(=2)+....
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=l+a since u(l)=u(0)=landu(=l)=u(-2)=....=0
Putting n = 2 in equation 2.7.75,
y(2) =n.'{ll+:n4||:fl;l+ﬂ2 u{ﬂj+aau{—l}+-..
=1+a+a” since u(2)=u()=u(0)=landu(-N)=...=0
Similarly the n™ sample of y(n) can be obtained as,
y(n) =l+a* +a’ +a* +....+a" o (2.7.76)

Compare equation 2.7.75 and above equation. There is no difference and
uin)=uin-1}=uin-2)=...1for n 2 0. With the help of standard relation in series, above
equation can be wrilten as,

n+l
y(n) =2 ! (2777
a-1
The above equation is written with the help of following standard series
ﬂ:l'll'l'l_l ]_d.ﬁr+|.. £E Ly
i at = = w (2.7.78)
k=10 ﬂ—] l—ﬂ

Ex.2.7.13 Two discrete time LTI systems are connected in cascade as shown in Fig. 2.7.20.
Determine the unit sample response of this cascade connection.

Sol. : The cascade connection of two LTI systems is illustrated in Fig. 2.7.9 earlier. The unit
sample response of the cascade connection is given by equation 2.7.33, i.e.,

Unit sample response of overall system = hin)

x(n) _{ hy(n) = {lE]ﬂ uin) —-I hyln) = H_}“‘ win) ‘-I"f_"fl

Fig. 2.7.20 Cascade connection of two discrete time systems
hin) = hyfn)=hy (n) o (2.7.79)

= i hy (k)-hy (1= k) ... (2.7.80)

k=—-m=

H A
Consider the first term ie. hy (k). Since h, {n]=(%} uind) Ry {k}=[%] u(k) We

know that u (k) =0 for k< (. Hence,
hy(k) = [%]ku{t} for k20 .. (2.7.81)
Consider the second term in convolution of equation 2.7.80 i.e. hy (n—=k). It is given that
ha {n]=[%]“u[n]. Hence hy (n—k) =[%] “iu[n - k) We know that u(n-k)=0forn< k.
Hence,
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n—k
hy (n—k) =[5] u(n—k) for n2k .. (27.82)
Putting the values of equation 2.7.8]1 and above equation in equation 2.7.80 we can write,
o k A=k
hin) = 3 (l] u{k}[l—] uin—k) . (2.7.83)
gl 4

Since k 2z 0, the lower limit of summation in above equation will be k ={. From equation
2.7.82 we know that n 2 k always. Hence upper limit of summation in above equation will be
k =n. This means if n=o, k = ; But k& will have maximum value equal to n. Thus we can

write equation 2.7.83 as,
k n-k
1 1
.Igﬂl 1 4

In the above eguation, we have not written w(k)andu(n =k) since the limits of
sommation are modified accordingly. Above equation can be further simplified as follows :

o= S0 (4 (3)

1y 1
= ;] i pralre
k=0 27 4
= l] i %.4*
W4) oo 2
(3] £ o
4] o0 2
= l) i —]#—-2*::1*
L4 k=0 2
_ :_‘) 3 2t . (27.84)

Using equation 2.7.78 we can wrile i 2% as,

1y 2™ -
hin) =| =1
(m) [4)

=[i)"[1"”—l]

This is the unit sample response of the cascade connection.
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Ex.2.7.14 Determine the response of the system whose input x (n) and unit sample response
h{n) is given as follows :

1

-n for D=n=6
x(n) =43 f

0 elsewhere
hin) = 1 for =2sn=1

0 elsewhere

Sol. : The input sequence x (n) is,

The unit sample response h(n) is,
h{n}:{!, L L1 I}
T

This example can be solved graphically, by multiplication or tabulation. Let us use
multiplication methed as given below in Fig. 2.7.21 from Fig. 2.7.21, it is clear that the
response of the system is given as,

| 10 16 .11
= = ]I- _— 5|- _— = E’
vim) {3 2, 3 6, 3 5, 3 }

T
1 2 4 5
=0 5 5 1 3 3 2
h{n) = 1 1 1 1 1
T
h 2 4 2
0 3 3 1 3 3 2
1 2 4 5
o 3 § 1 3 3§ 2 =
12 4 8 .
0 5 3 3 3 2
o 3 5§ 1 3 3 2 x o« o«
1 2 4 5 « x x ”
0 3 3 13 3 2
1 10 16 11
yiny= O 3 ; 2 3 5 G ) 5 5 2

Fig. 2.7.21 Computation of convolution of example 2.7.14
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Ex.2.7.15 Determine the response of the LTI system whose input and unit sample response is

Egiven as,
< (n) ={n+1 for 0£n<2
0 elsewhere
and hin) = a" u(n) for all 'n

Sol. : Here x(n) is finite duration and h(n) 15 of infinite duration. In such cases th-:
cummlunun should be performed carefully. We know that convolution is given as,

yimy = 2 x(k)h(n-k)

k=-m

or yimy = ¥ h(k)x(n-k)
k=-m
By commutative preperty of convolution.
The given sequence x (n) is,
.l:{ﬂ}={l.13}
T

and hin) =a" uin)

In convolution we have to fold one sequence. It is always convenient to fold infinite
duration sequence.

Here h(n) is infinite duration sequence. In first convolution equation h(m —k) means
h(n) is folded and shifted. Hence we will use first convolution eguation. i.e.,

yim = 3 x(k)h(n-k)

b=

We have x (0) =1 x(1)=2 and x(2)=3 Hence above eguation becomes,

yin) = i x(k)h(n-k)
k=0

Here observe that x (k) is finite duration sequence. x (n)=0 for k £ —land k = 3. Hence
the product x (k) h(n~k)=0 for k £ -land k = 3. Therefore the limits of summation are k =0
to k=2 in above equation. Now let us put the value of /i (n) in above equation. i.e.,

y(n) = i xikya™ " win-K) o (2.7.85)
k=0

In above equation u(n—k)=1for nzk and u(n-k)=0 for n< k. Hence abuvuuquauun
can be written as,

yin) = i (k) a"* for n2k .. (2.7.86)
L=}
First few samples of v({n) will be
y(0) = i x{.‘:}ﬂ'* =x(0) since nz2kiec k<nork<0
k=0
= 1
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}Iil] = ix{.ﬁ:]al"‘ =x(0)a+x(l) since k<mnie k=1

k=0
=a+l
¥(2) = i x(k)a*™* =x(0)a® +x (D a+x(0)
k=0
=a’ +2a+3

y(3) = i x(kya** =x(0)a® +x (1) a® +x(0)a
k=0
=a’ +2a +3a... and so on.

Thus other samples can be computed. And y(n)=0 for n<( This is because y(n) is
computed for » = k as given by equation 2.7.86 and lowest value of k=0

From equation 2.7.85 we can write y(n) alternately as,
vin)=x(0)a" uin)+x(1) a" M uin-D+x(a"* uin-2)
Here summation 15 expanded. Putting values of x (n),
yin) =a" u(m)+2a" " u(n-1)+3 a*? uin—2) . (2.7.87)
Compare above two equations with equation 2.7.71. Check whether these equations are
same if a=1 Then above equation can be directly obtained from equation 2.7.71.
Ex.2.7.16 Determine the output of the LTI system whose input and unit sample response are
given as follows :
x(n) =b" u(n)
and hin) =a” uin)

Sol. : Here both x (n)and h (n) are infinite duration sequences. We have already stWed this
type of convolution in example 2.7.13. By definition of convolution,

a

yin) = ¥ xik)h(n-k)

k=-m=

Putting the given sequences in above equation,

y(n) = 3 b u(k)-a" " u(n-k) .. (2.7.88)
k=-=
1 for k20
Here uik) ={ o
0 for k<0
Hence lower limit of summation in equation 2.7.88 becomes k =0 and u (k) =1 ie.,
y(n) = i b* a"* win-k) . (2.7.89)
k=0

1 for m2k

0 for n<k or k>n

In above equation w(n -k) ={

Hence upper limit of summation in equation 2.7.89 becomes "'n" and u(n - k) =1, 1e.,
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vin) i b* a"*  Here nzkz20

k=10

k —k
B a"-a

a" ,,% (b a")*

Using equation 2.7.78 we can write the summation in above eguation as,

]
=

yin)

I}
B

n+l n+l
B3 =b—_'ﬂ. for nz0anda=b

Ex.2.7.17 Determine the response of the system whose wnit sample response and input are
given as follows :
xin) =uin+l)-uin-4)-6i(n-5)
and hin) =[u(n+2)-uin-3)]-(3-|n)
Sol. : Let us first determine the sequences x(n)and A(n). These sequence can be best
obtained from graphical interpretation. Fig. 2.7.22 shows how sequence x (n) is obtained. Fig.
27.22 (a) shows the unit step sequence u(n). The sequence w(n +1) can be obtained by
advancing u(n) by one sample. That is to shift u(n) left by one sample. This u{n +1)
sequence is shown in Fig. 2.7.22 (b). The sequence u (n —4) is obtained by delaying u (n) by
four samples. That is to shift u (n) rght by four samples. This u (n = 4) sequence i1s shown in
Fig. 2.7.22 (c). The sequence & (n —5) is basically a unit sample delayed by five samples. This
is shown in Fig. 2.7.22(d).
Now let us perform the addition and subtractions on w(n +1),u(n—-4)and 5(n -5) on
sample to sample basis as per given x (n). Le,
x{n) =uin+l)-uln-4)-8(n-3)
The sequence x (n) is shown in Fig. 2.7.22 (e). From this figure we can wrile x (n) as,

i
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{@). Sketch of
unit step uin)
saquencs uin)

2929999 p

2 10 1 2

-
=

(b). uim) advanced

by one sample u(n+1)
11 1 1 1 1 1 1
? 199999 %
2 =10 1 2 3 4
(€). uin) delayed by
four samples L'{":‘J
1 1 1
= O S—"Y ? ? ? n
=2 =1 0 1 2 3 4 5
(d). The unit sample
delayed by r-5)
five samples
1
o o g_o_T_g;n
-2 10 1 2 3 4 5 8
ahtgmﬂﬁ:;n '-":"'";ﬂ = u{n—4) = §{n—=5) = x(n)
saquences of
Fig. (b}, (c), & (d) .IT - - - ; ? _IE
14 32333
- - o E i
11 1 1 1
f ¥ %o .
-ta 1 2 3 4 4 8
-1
Fig. 2.7.22 To obtain x (n)=wu(n+1)-u(n-4) -&(n-5). Here x (n)={1, 1, 1,11, 0, -1}

1

x(m)={LLLLLO-1} (2.7.90)
1 - (2.

Now let us see how to obtain k(n). Fig. 2.7.23 (a) shows the unit step sequence u (n).
Fig.2.7.23(b) shows the seguence u(m +2). This is obtained by advancing (i.e. shifting left)

w(n) by two samples. Fig. 2.7.23 (c) shows the sequence u(n—3). This is obtained by
delaying (i.e. shifting rght) win) by three samples. Fig. 2.7.23 (d) shows
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). Sketch of
:Burﬂtﬂep in)
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11 1 1 1 1 1
NI A A A G
4 -2 10 1 2 3 4 5§
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Fig. 2.7.23 To obtain h(n)=[u(n+2) -u(n-3)]-(3 -|n|) Here h[n}={1' 3 ? ;1}

[u (m+2)-uin —3}]. Fig. 2.7.23 (e) shows the sketch of (3 —|r||} Fig. 2.7.23 (f) shows h(n)
which is obtained by multiplication of sequences of Fig. 2.7.23 (d) and Fig. (e). Thus from
Fig. 2.7.23 (f), h(n) is obtained as,
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= (123.21) a7

Output y(n) is obtained by convolution of x(n)and k(r). The convolution using tabulat
method is shown below in Fig. 2.7.24,

1
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6
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Fig. 2.7.24 Computation of convolution using tabulation method

From above figure it is clear that the computed sequence of y(n) is,
yim)={L368985L-2-2-1}
1

The total number of elements before T in x (n)and h (1) is 'three’. Hence there are ‘three'
elements before T in y(n).

2.8 Difference Equations

Till now we were discussing about discrete time signals, systems and linear shift invariant
systems. In this section we will intraduce difference equations which is an efficient way to
implement discrete time systems. We know that the convolution of input sequence x {n} and
unit sample response & (n) gives the output y(n) i.e.,

ym) = 3 hBx(n-k . 281)

k= =m
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This is the standard convolution equation. If the LTI system is causal,

hin) =0 for n<0 .. (2.8.2)
then the output of such causal LTI becomes,
]
yin) = Z hik)x(n-k) - (2.8.3)
k=i

- The above equation is obtained by putting the causality condition of equation 2.8.2 in
equation 2.8.1. Two types of sysiems are possible depending upon the length of unit sample
response h (k) in equation 2.8.3. They are defined as follows :

2.8.1 Finite Impulse Response (FIR) Systems

In the equation 2.8.3 we have stated that the LTI system is causal. Hence h(k)=0 for
k< (. But now if h{k)=0 for k> M, then we can write equation 2.8.3 as,

M-I
yin) = X h(k)x(n-k) .. (2.8.4)
k=1

Here observe that the unit sample response is non zero for £ =0 to M —~1 Thus there are
finite number of terms in the unil sample response. These terms are,

R{O), R(1), R(2),....h (M =1) : Number of terms are "M'.

The systems for which unit sample response h(n) has finite number of terms, they are
called Fimte Impulse Response (FIR) systems. And the output of such FIR systems is given
by equation 2.8.4 above. Expanding equation 2.8.4 we get,

yimdy=h(Mx(m)+h(Dx{n-+h(Dx(n-2)+...+h(M-Dzx{n-M+1) .. (285

Thus the output yim) is equal o weighted sum of x(n)x(n-1),xin-2),
o X (n =M +1) input samples. These inpul samples are most recent ‘M’ samples. Thus the FIR
system has to store x(n =1}, x(n=2) x{n-=3)...x(n-M+1) ie. (M —1) number of input
samples in the memory.

2.8.2 Infinite Impulse Response (lIR) Systems

Now let us consider equation 2.8.3,

yin) = 2 hik)x(n-k) . (2.8.6)
k=10
Here we have considered the causal LTI system and hence h(k)=0 for k<0 Now let
hik) be non zero for all values of k>0 That is, h(0), h(l), R (2), h(3),... k(=) all these
terms will be non zero. Hence in the computation of output y(n), we have to consider all
values of h(k) for 0< k e, These are infinite number of terms in h (k). The systems, for
which such infinite number of unit sample response terms are to be considered are called as
Infinite Impulse Response (IIR) systems. Thus we can expand equation 2.8.6 for IIR system
s,
vir)=h(D)x(n)+h(l)x{n=1)+h(2)x(n =D+ h{3xin=-3)+...h(=)x(n-m)
- (2.8.T)
This equation shows that computation of y(n) involves use of x (n) and all past inputs.
Hence all past inputs are to be stored in the memory. Ideally, x(n), x(n =1} x(n-2),
v X(m—o)=x(w) are the infinite number of inputs 10 be used for computation and stored in
the memory. Thus the [IR systems needs infinite memory.
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Comment :

Here we briefly defined the FIR and IIR systems. FIR systems can be implemented with
the help of convolution given by equation 2.8.4. Such operation needs (M —1) number of past
input samples are to be stored in the memory. But the computation becomes inefficient when
‘M’ becomes large.

But IIR systems described by convolution operation of equation 2.8.6 needs infinite
number of samples to be stored in the memory. Hence memory requirement is infinite. This is
not possible practically. Such IIR systems are implemented with the help of difference
equations. Such implementation is very efficient in terms of computation and memory
requirements.

2.8.3 Nonrecursive Systems

When the output y(n) of the system depends upon present and past inputs, then it is
called nonrecursive system. i.e.,
vin) = F[: in)xin-1,x{n-2)...x(n —M]] .. (2.8.8)
Here F[] denotes the function of the guantity contained within the brackets [ |. We know
that the output y(n) of causal FIR system is given as,

yvin) = hik)xin-k) . (2.8.9)
k=10

Here we have considered (M +1) terms of unit sample response compared to these of
equation 2.8.4. [In equation 2.8.4 we have considered ‘M’ term of h(n)]. In the above causal
FIR system h (n) is non zero for 0 € n £ M. Expanding above equation we get,

yim)=h(x(n)+h(Dxin-1}+h(2)x{n-2)+...+h(M)x(n-M) .. (2.8.100

= F[x(n),x(n=1),x(n=2),...x(n-M)]

Here v(n) is the function of present and past M input samples. This is nonrecursive
system. Thus the causal LTI FIR systems defined by linear convolution are basically
nonrecursive systems. Fig. 2.8.1 shows the basic form for such nonrecursive systems. These
systems do not use any feedback from the output y(n). But observe that the system has to
store x(n=1Lx(n=2),...x(n-M) all these 'M' number of past input samples in the
memory. Hence nonrecursive systems need larpe memory if M is large. For causal IIR
systems, the convolution equation is given by equation 2.8.6 as,

x{n Nonrecursive system yim)

—————

: | Fle(n), x(n=1), ...x(n=M)]

Fig. 2.8.1 Basic form for causal nonrecursive system

yin) = 3 hik)x(n-k)
k=10
yir)=hiDjx(nj+h(l)x{n-1)+h{x(n-2)+... him)x(n—ax)
=F [x(n),x(n=1),x(n=2),x(n-3),...x (=]
This shows that for the nonrecursive implementation of IIR systems all (ideally infinite)

input samples are to be stored in the memory. This is practically impossible. Hence
implementation of causal IIR systems is not possible in nonrecursive form.
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2.8.4 Recursive Systems

When the output y(n) of the system depends upon the present and past inputs as well as
past outputs, it is called recursive system. The causal FIR and IIR LTI systems can be
efficiently implemented using recursive systems. The recursive systems are efficient in terms of
memory requirement and computations,

Consider the system which is basically nonrecursive,

yin) = i x (k) - (2.8.11)
k=0

This can be assumed to be convolution equation with h(n —k)=1 for all terms, Let us
expand the above eguation for various values of n.

n=0= y(l)= i x(k)=x(0)
k=0

n=l= y(l)= i x{(k)=x(+x({)=y{0)+x(1) from above equation
k=0

n=2= vy(2) =i x(k)=x(0+x(1)+x(2)=y(1) + x (2) from above equation
k=10

n=3= Fi31=ﬁ x(k)=x(M+x(1)+x(2)+x(3)=y(2)+x(3) from above equation

k=10

-
n=n-1= yin-=1) = E (k)=x(M+x()+x(2)+x(3)+...+xi(n-1)
k=0

H=R=> vin) = i x(k)=x(M+x(1)+x(2)+x(3)+
kwmiD
cotx(n=D+x(n)=y(n=1)+xin) from above aquation
Thus we have expressed the equation 2.8.11 as,

yin) =y(n-1)+x(n) .. (2.8.12)
Here y(n—-1) is the previous output. Thus the present output y{n) is calculated using
previous output y(n=1) and present input x (n). This is recursive system. In the recursive
systems the previous outputs are used to calculate next outputs. Fig. 2.8.2 shows the
implementation of recursive system of equation 2.8.12. Observe that the feedback is present
since it is recursive system. This system needs only one memory location to store the previous

x(n) . yin)

yin-1)

=1
4

Fig. 2.8.2 Block diagram representation of the recursive system of equation 2.8.12
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output y(n =1). The z”! block indicates delay of one sample. And there is only one addition.
Whereas if we implement equation 2.8.11 using nonrecursive, then the system has to store all
previous outputs. Similarly all the terms are to be added. This requirement of memory
increases as 'm' increases. Thus recursive systems are efficient in terms of memory and
computations. The [IR systems are also converied in the recursive form to make their
implementation easy. Here we have shown that thé output y(n) is some function of previous
outputs and present and past inputs in recursive systems. i.e.,

yin)=F [_v{n—l].}'{n—i}.y{n —3}...}'[”—HL.I{H:h].’{n—2]5[#—3]...:{!1-—”}]

. (2.8.13)
Fig. 2.8.3 shows the basic form of recursive system based on above equation.

x(n) Racursive systam yin)
a1 F [y(n=1), yin=2), ..y(n-N)
x(n), xin=1}, ...x(n=M)]

Fig. 2.8.3 Basic representation of recursive system
In the above block diagram the delay block shown separately is crucial. Since it provides
previous output for calculations. It is not possible to calculate y(n) in terms of y{n), which
would be the case if delay block is absent !

2.8.5 Representation of Discrete Time Systems via difference
Equations.

In the last subsection we studied about how recursive equations can be written for FIR and

[IR systems. Now let us see the generalized form of constant coefficient difference equations

used to represent LTI systems. Basically the recursive equation given by equation 2.8.12 is a

~ constant coefficient difference equation. Observe that the coefficients of y(n—1)and x (n) are

constants, i.e. 1. Now let us consider the recursive system having,

yin) =ay(n=1)+x(n) .. (2.8.14)

Observe that this equation has constant coefficients of 'd and 1. Let us find out y(n) in
above equation for different values of n. ie.,

n=0= ¥(0) =ay(-1)+x(0)

n=l= y(l) =a}r(ﬂ}+x(1}=a1y{—]}+n.r|[ﬂ}+x|{l}

n=2= ¥(2) =ay{1}+x(2}=a3}l{—]}+azx(ﬂ-}+ax{]}+x[1}

n=3= y(3) =ay(D+x(I=ay(-D+a’ x (0 +a* x () +
ax(2)+x(3)

yin) =ay(n=D+x(n)=a"" y(=D+a" x(0)+a"" x (1) +...

vetaxin=1y+x(n)

=a™y(-1+ i at x(n—k) . (2.8.15)
k=0
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Here since we have considered the causal system, the output y(n) 15 calculated for n2 (L
For this calculation we need value of y(-1). This value of y(-1) is basically initial condition
of the system. When y(-1)=10, the system is said to be relaxed initially. This is also called
zero state of the system. And the output obtained with zero initial state is called zero state
response or forced response of the system. It is called forced response, since it is forced due to
input. It is denoted by y,, (n). Hence equation 2.8.15 becomes,

yu(n) = Y a* x(n-k) with y(-1)=0 .. (2.8.16)
k=0
If the system is not relaxed initially, ie. y(=1)#0 and input x (n) =0 for all n, then the
response obtained is called zero input response or natural response. It is denoted by v, (n)
i.e., with x (n} =0 for all n in equation 2.8.13,
¥y (n) =a" y(-1) .. (28.17)

Thus the nonrelaxed system produces output even if input is absent. The total response of

the system is given as,
vin) =y, (n)+y,(n) . (2.8.18)

Then the total response is linear combination of two responses. This can also be
considered as the condition for linearity of the system.

Till now we have considered two recursive systems given by equation 2.8.12 and equation
2814, These are basically linear constant coefficient difference equations. The generalized
form of such equation is given as,

N .
yim) =-=Z¢.r1 _].l{.r:l'-ﬂ!}-l-' ibk rin=k) .. (2.8.19)
k=1 k=0

Here "N’ represents the order of the difference equation and hence order of the system.

Linearity, shift invariance and stability of systems represented by difference
equations:

Here we will consider the linearity, shift invariance and stability properties of recursive
systems described by constant coefficient difference equations.

Linearity :

A system is said to be linear if it satisfies the following requirements :

(i) The total response y(n) is equal to the sum of zero input response y_; (n) and zero
state response y,, (n) ie.,

yin) =y, (n)+y, (n)

(i) Zero input response should be linear, and

(ifi) Zero state response should be linear.

Shift invariance : _

The difference equations clearly state the inputfoutput relationship. The coefficients
a; and by in difference equations are constants and independent of shift. Hence the recursive
systems described by constant coefficient difference equations are shift invariant. Such systems
are lincar also, Hence they are Linear Shift Invariant (LTI) systems.

Stability :

The recursive system described by linear constant coefficient difference equation is BIBO
stable if for every bounded input and every bounded initial condition, the output is bounded.
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2.9 Correlation

The correlation technique is very much similar to convolution., Correlation is always
computed for two sequences. Correlation provides the information about similarity between the
two sequences. Correlation is used in many applications where digital signal extraction is
required. Such applications are Digital Communication systems, Radars, Spread spectrum
communications, Mobile communications etc. In such applications the incoming / received
signal is correlated with the standard set of signals. From this set a signal is selected, which
shows maximum correlation with the incoming / received signal. Thus the received signal is
identified or detected. This is the main application of correlation.

2.9.1 Cross-correlation and Auto-correlation

The correlation can be of two types cross comelation and auto correlation. When the
comelation of two different sequences x (n)and y(n) is performed, it is called cross correlation.
Crosscorrelation is basically a sequence and it is denoted by r, , (/). It is given as,

rey (= 3 x(my(n=D, 1=0£L£2,... .. (29.1)
Hm =

or . Fe y (N = i x(n+ly(n), I=0,£L %2 ... e (2.9.2)
H= =ik

In the first equation v{n) is delayed with respect to x(n). And in the second equation
x(n) is advanced with respect to y(n). Both of these operations are equivalent. Hence above
two equations provide identical crosscorrelation sequences.

The crosscomelation sequence Fyx (1) are defined as follows :

rye (D= 3 y(mx(n-1D .. (29.3)
W= 0
or Fyx () = i yin+lx(n) e (2.9.4)
A==
The autocormelation of x frpj 15 denoted by r. . (I) and it 18 given as,
()= 3 x(n)x(n=1I) . (29.5)
n= = .
or P () = i x(n+xin) . (29.6)

Both of the above equations are written from definitions of crosscorrelation with

x(n)=yin)
If x(n)and y(n) are causal sequences of length 'N', then crosscorrelation . and
auto-correlation sequences are given as,

N=li=1
ryy () = f x(n)yin=1I . (297
Nl -1
and ree (D) = i x(n)xin-1I) e (2.9.8)
LT
Here i=!and k=0 for [20

and i =0 and k=I for I<0
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Ex. 2.9.1 Prove the following
(i) ry -[E}:r” (=) L.e. correlation is not commutative
(i) ry y (=x(l)=y(=I)

Sol. : (i) Consider equation 2.9.1,

rey (= % x(m)y(n-=0

==

Since product x (n) y(n=l1=y(n=1[)x(n) we can write above equation as,

a0
rey (= 2 yin-Dx(n)

==

We can write v(n - [) as }'[nﬂ-!]] ie.,

)
rey (D= 3 y[a+(=D]x(n)
n=—m
Compare the RHS of above equation with RHS of equation 2.9.4. We have,
re y () =r,, (<I) from equation 2.9.4 . (2.9.9)
This proves that correlation is not commutative.

(ii) Consider the linear convolution of two sequences x (n)and v(m). i.e.,
A

x(miwy(n) = 3 x(k)yin—k)
k=-m
Since 'n' 15 just the index, we can write ' inplace of "»n'. ie,

x(D=y(h) = 2, x(k)y(l-k)
k=-=
Again ' k" is just the index. We can write "n' in place of "k, ie.,
L]
x(Day() = 3, x(m)y(l-n)
= — 2
This is the convolution of two sequences x ([Jand y([). If we fold y(I), then folded
sequence becomes y(=[). The convolution equation for x(f)and y(=I) can be obtained by
folding (/) in above equation. i.e.,

x(Dwy(=l) = i x(n)y[-(l-n)]

= —&

In the above equation observe that we have inverted the signs of indices of 'y'. The above
equation (RHS) can be further simplified as,

x(Dxy(-N = 3 x(myin-D

The RHS of above equation is basically r, , () of equation 2.9.1. Thus we have,
x(Dey (=0 =r,, ()
or Ty (N =x(N=y(-h e (2.9.10)

Thus cross correlation of x (n)and y(n) is equivalent to convolution of x (a)and y(-n).
Here y(=n) is obtained by folding y(n).
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Ex. 2.9.2 Determine the crosscorrelation sequence r, , (I) of the following sequences :
x(n)={2-L37,12-3}
‘T.

yin)={L-L2-241-25}

T [Dec - 98]
Sol. : Here given sequences are,
x(—-4)=12 yi-4) =1

£(=3)=-1 y(=3) =~
x(-2)=3 y(-2) =2
x(-1)=7 y(-1) = -2
x(0)=1 « yil) =4 +
(=2 y(l) =1
x(2)=-3 y(2) = =2
y(3) =3

The cross correlation sequence r, , (/) is given by equation 2.9.1 as,

J";y“] = Z x{n)yin=1)

==

For x (n), the index "n' vanes from -4 o 2,
Hence above equation becomes,

rey () = i x{n)y(n=10

n=—d
The above equation can be expanded as,
ey =x(=4) y(-4-D+x(-y(-3-D+x(-Dy(-2-0
+x(=Dy(=1=D+x(My(=H+x(Dy(1-D
+x(2) (2= - (29.11)
In the above equation all the ' ¥ terms are “zero’ for [ £ — 8 Hence starting from {=-7,
Fyy(=T) =x(=4)y(=4+TN+x (=3 y(-3+TN+x(-2y(-2+7)
F X (=1 y(=1+T)+x(Myv(Ti+x(Dwi(l+T)+x(2)yv(2+T)
=x(=4)y(D+x(=Ny(D+x (- y(5)+x (=D y(6)
+x (0 (M) +x (1) y(8)+x(2) y(9) '
=x(-4)y(3) since y(d)=y(5)=...=y(9=0
=2x5=10 r;_.l,{-'.i"]=|l]
Putting / =- 6 in equation 2.9.11 we get,
Fry(=6) = x(-4)y(2)+x(-3)y(3), since remaining terms are zero

=2x{=2)+(=1)x5==9 ryy (=6)==9

On the similar lines other values of r, , (/) can be obtained by putting /=-5,-4, -3,-2,
=L01 2345 and 6 in equation 2.9.11. Tﬁcsx: values are,
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rey(=3) =19, r,,(-4)=36 r,,(-3)=-14
rey(=2) =33 rny(-D=0 r,(0)=7
rey() =13, rpy(2)=-18, r.,(3) =16
Feyld) ==7, r.,(3)=3  r,,(6)==3
If we put /=7 in equation 2.9.11, all the 'y terms will be zero. Thus,
rey() =0 for [27 and I<-8
Thus the crosscorrelation sequence is,
rey (0=410,-9,19,36,-14,33,0,7,13,-18,16,- 7,5, -3}
T

- (2.9.12)
To obtain correlation sequence using convolution :
From equation 2.9.10 we know that,
rey () =x(ey(=1)

Here cross comrelation sequence is equal to convolution of x(and v(=1{). And y(=1) is
obtained by folding y ([).

The sequence yi([) 18,

}’U}={L -1L2-24,1 —2..'5}
T.

The folded sequence y(—[) becomes,
y(-h={5-214-22-11}

Here observe that the folding is done around =0 And y(-4) becomes y(4) in the folded
sequence and so on. Fig. 2.9.1 shows the convolution of x (/)and y (—[) using multiplication
method.

:

x(l) = 2 - 7 2 -3

W= & -2 1 2 2 4 1

[T s B R

2 -1 3 T 1 2 =3 E ® S ® ®
= 2 =6 =14 =2 4 i " N x s ] *
10 =6 15 35 5 10 =15 “ x L ] b " E

iyil= 10 -8 19 36 -14 33 0O ; 13 18 16 -7 5§ -3

Fig. 2.9.1 Computation of cross correlation using convolution
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From Fig. 2.9.1 the cross correlation sequence obtained by convolution is,
r”(i}={lﬂ.—9.19.36,—14,33,,1],7113,—13,15,—11—3}
T

Observe that the above sequence is the same as one obtained earlier in equation 2.9.12.
There are 4 samples of x ([} before T and 3 samples of y(-1) before T. Hence there are

4+3=7 samples in r, , (/) before T as computed in Fig. 2.9.1,

Ex. 2.9.3 Determine the auwlocorrelation sequences of the following signals :

0 xfn]={#ll.l}
(i) yin)={1L21}
.T.
What is your conclusion ? [Dec - 99]

Sol. : The autocorrelation of the sequence is given by equation 21.9.5 as,
rexe = ¥ x(mdx(n-0
R ]
Using equation 2.9.10 we can write above equation as,
Foo () = x(Dex(=1).. (2.9.13)

This equation shows that autocorrelation of the sequence 15 obtained by convolving the
sequence with its folded version.

Consider the first sequence x (n). i.e.,
IU]'={L1.L1}
T

The folded sequence x (- [) becomes,
r{—f'.l={ LL21}
.T

The above sequence x (- I}ls obtained by folding x (1) amund {=0. Fig. 2.9.2 shows the
convolution of x ([)and x (- [) using multiplication Telhud.

= 1 2 1 1
i-f= 1 1 2

-*_l.

2 4 2z 2 x

1 2 1 1 = E]

1 2 1 1 ® ] M

= 1 3 5 ; 5§ 3 1

Fig. 2.9.2 Computation of autocorrelation
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As shown in above figure, the autocorrelation sequence r, . ([) is,
re (D ={1, 3._51 ;. 53,1} L (29.14)

From equation 2.9.9 we know that,

ey () =0y, (=0)
Then for auto correlation sequence above equation becomes,

ryx () =1y (=D e (2,9.15)
Observe that above relation is satisfied by auto correlation sequence of equation 2.9.14.

Now let us consider the second sequence,
y(my=y(D={L 1L 21}
T

The folded sequence y(—I) can be oblained as,
y(-D={1 211}
T

Hence the auto correlation sequence can be obtained using equation 2.9.13 as,
Fey () = y(Dey(=1)
If we perform the convolution of y(/)and y{-1)
We get,
r”{ﬂ={L 35753 l}
.T.

Observe that r, , ([) obtained above is same as r, . () of equation 2.9.14. This is because
yin)=x({-=n+3)} TIT'IiE 15 equivalent to reversing the sequence x (n). Hence the autocorrelation
sequences are same.

2.9.2 Properties of Crosscorrelation and Autocorrelation Sequences
Here we will see some of the important properties of correlation sequences.
1. The crosscorrelation is nol commutative. i.e.,
Fs ¥ “} =r_:r1 {—ﬂ
We have proved this property earlier.
2. The autocorrelation sequence is an even function. i.e.,
Frx “J =Fyx {_”
This property follows from the first property when x (n)=y(n).
3. The crosscorrelation is equivalent to convolution of one sequence with folded version of
another sequence. ie.,
rey () =x(Dwy(=1)
This property also we have proved earlier.
4. The autocorrelation sequence attains maximum value at zero lag ie /=0 ie,
|re s (D] S 7y (O)=E, . (29.16) .

This can be proved very easily. Consider the equation for autocorrelation sequence. i.e.,
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rey () = :T_I x(n)x(n=1I) By equation 2.9.5

W -

With zero lag i.e. [ =0 above equation becomes,
(= 3 x%(m)

H=—m:
= 'EJ:'
5. The crosscorrelation sequence satisfies the condition of,
!rI v .:1)1 < .Jr“ (0)yr,, (0) = ,I,TEI E,
The above equation gives upper limit on r, , (/).

6. The shape of the crosscorrelation sequence depends upon shapes of x (n)and y(n),
rather their instantaneous amplitudes.

2.10 A/D Conversion Process

Most of the signals are analog in nature when they are generated from the primary source.
Analog signals are continuous in time and amplitude. The signals such as speech, video, radar,
seismic signals, ECG, EMG etc signals are basically analog in nature. If these signals are to be
processed digitally, they should be converted to digital form. Such conversion is performed by
Analog to Digital (A/D) converters. The AJ/D converters are available with standard
specifications in the market. The output digital signal is converted back to analog form by
Digital to Analog (DfA) converters. Thus A/D and D/A converters are always used with DSP
systems.

Fig. 2.10.1 illustrates the process of A/D conversion in brief. It consists of three basic
block of A/D converter.

Analog Digital
ignal xin n ignai
l“E-‘I—-- Samplar i Cluantizer i Encoder —Eu—mﬂ.I
xglt) Discrate Quantized
time signal
signal

Fig. 2.10.1 Basic block diagram of A/D converter

We will briefly study these three basic operations of A/D conversion in following
subsections.
2.10.1 Sampling
The continuous time signal x, (r) 15 converted to discrete ime signal x (n) by sampling.
The sampler takes the samples at regular time intervals, The sampling interval is denoted by T.
Then continvous time variable ' and discrete time variable 'n' are related as,
it =nT n=0L23,.. we (2.10.1)
This means x, (r) is represented in its samples at 0, T, 2T, 3T, 4T ,... Hence x (r) and x (n)
are related as,
x (1) =x,(nT)=x(n) n=01L23... e (2.10.2)
Thus discrete time signal is discrete time signal x (n) is defined only at n =0,1,2,3,... And
its value is equal to x_, (nT). Here T is sampling interval.



Digital Signal Processing 120 Discrete Time Signals & Systems

The sampler is normally a switch and it chops off the incoming analog signal. It is
illustrated in Fig. 2.10.2. As shown in the figure, the sampler switch operates at the sampling
rate of F,, which is given as,

1

Sampling rate F, = .. (2.10.3)
prne Sampling interval T
Sampler
e
T [} F = l F
i 57T
Continuous fr—— Discrela
time xall) x(n) = x,(nT)  time

signal L signal
5

Fig. 2.10.2 Sampler
Here ' F." is also called sampling frequency. Thus 'F,' can be expressed as samples per
second or in hertz. The sampling interval T is in seconds. Fig. 2.10.3 shows the input signal
x,(r) and its sampled version x (nT) or x{n) In this figure observe that x(n) takes the

(&) A continuous ",{”
time analog I

signal /’——\\

(b) A discrete x(n) Xglt)

1 2 3 4 5 6 T 8  Samples
2T =T ol T 2T 3T 4T 5T 6T 77 8T  t=nT

Fig. 2.10.3 Sampling of the analog signals
amplitude of x_ (r) at the sampling instants ¢ = nT. The values of 'n" can be only positive for
real time processing. But 'n' is considered in the range —o< n< o« for mathematical simplicity.
Hence we can rewnite equation 2.10.2 as,
x{n) = x,(nT) - < N W e (2.10.4)
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Since r =nT and F, =]F we can wrile an important relationship as,

t =nT= e (2.10.5)

n
F;

This equation gives the relationship between time ', samples 'n' and sampling frequency
F,

2.10.2 Frequency Relationships .

Here we relate the continuous time frequencies (F,£2) Wwith the discrete time frequencies
(f,®) in terms of sampling frequency (F,). This relationship is extremely important for digital
filter design. It is also useful for the conmversion of discrete and continuous time domains.
Consider the analog sinusoidal signal,

xq (1) = A cos (2mFt +8) .. (2.10.6)

Let this signal be sampled at the regular intervals, Hence x(n) can be obtained by putting

t =nT in the above equation. Le.,
x(n) = x, (1) ,pr =%, (nT)
= Acos (2nF nT+8) . (2.10.7)

The sampling frequency F, =% or T=FL, hence above equation becomes,

{

xin) = A r:ﬂ.r[hn .F'i +'EIJ - 12.10.8)
.
Earlier we have represented discrete time signal x (n). It is given by equation 2.2.13 as,
x(n) = Am(!nﬁ: +E} - (2.10.9)
On comparing above equation with equation 2.10.8 we obtain,
f=Xorr . (2.10.10)
F.T
Since 2n F ={}, equation 2.10.8 becomes,
x(n) =Am[n%+ﬁ] 21011
¥
The similar equation we have obtained earlier. It is given by equation 2.2.11 as,
x(n) = A m.r(mn +ﬂ) e (2.10.12)
On comparing above equation with equation 210.11 we obtain,
o = %=ﬂ r - (2.10.13)

I

The above equation can be directly obtained from equation 2.10.10 by simply multiplying
both sides by 2r and letting @=2nfand) =2nF. We know that the continuous time

frequencies have infinite range of distinct frequencies. i.e.,
—m< Feom and -wo<{l<o e (2.10014)
In the conclusion of example 2.2.3 we have seen that the maximum range of discrete time
frequencies is.| :
' -%s;s% and -mE<wmEn e (2.10.15)
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This maximum frequency is also illustrated for the sinusocidal signal in Fig. 2.2.10 also.
[Readers are advised to study example 2.2.2 in detail]. From equation 2.10.10 we know that
F

f =—. Hence above equation becomes,
§
AP
2 F, 2
-5 <F Sﬂ e (2.10.16)
2 2

This equation shows that the maximum range of frequencies that can be represented by the

discrete time signal is from -% o % Or highest signal frequency that can be represented by

discrete time signal if sampling frequency is F,, will be,

F, 1
Fogy ==L=— - (2.10.17
p— T )
Since 0 = 21 F, equation 2.10.16 will be,
Ao F
2 2n 2
-nF,sQ<xF, . (2.10.18)
And niaximum frequency 02, is,
Qs = nF,=¥ o (2.10.19)

The various frequencies, their ranges and conversions are summarized in Table 2.10.1.
Table 2.10.1 : Summary of continuous and
discrete time frequency relationships

Continuous time frequencies 0, F
Discrete time frequencies o,
Sampling frequency F, or L
Conversion relations = O =0T
F,
F
== FT
f F
Range of continuous time —wellcm
frequencies ~m< Fem
Rangeut:d_iscrﬂetim: —lifil
frequencies 2 2
-MEWETN Or
F F,
—fleFg L
2
-aF.sFsnF,
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- . F .
Here we have concluded that if signal frequency lies in the range -?’ sFsg ﬂ; it can be

represented by discrete time signal. Now let us see what happens if signal frequency F > %

This concept is illustrated with the help of an example considered next.

Ex.2.10.1 The following four analog sinuseidal signals are sampled with the sampling
frequency of 40 Hz. Find our the corresponding discrete time signals and comment
on the result.
xj (1) =cos 2n(l10)¢
X, (1) =cos 2n(50)r
x5 (t)=cos 2n(90)r
xy (1) =cos In(130)¢

Sol. : Here clearly observe that the signal frequencies are,

Frequency of x, (1) is F, =10Hz

Frequency of x, (¢) 1s Fy =50 Hz

Frequency of x5 (¢) is Fy3 =90 Hz

Frequency of x4 (1) is Fy =130 Hz

Since the sampling frequency F, = 40 Hz, the maximum discrete time frequency that can be

represented properly is % i.e. 20 Hz. So here F; will be represented properly and let us see

what happens for F;, F;and Fy. We know that x (n) is obtained by putting 1=Fl in x ()

5

in given analog signal equations. Consider x (f) ; we obtain x; (n) by

xy (n) = cos 2n10-—
y (m) m

= CoF En[m]n
40
= COf iﬂ[%]ﬂ e (2.10.200

Comparing this equation with discrete time equation x (n) =cos 2Znfn we get,
fi = i cycles / sample e (2.10.21)

MNote that this frequency is less than f < —11- Hence it will be represented properly.
Now consider the signal x, (s). Its sampled version at F, =40 Hz becomes,

"
Xa (n) = cos 2n50-—
2l r

= Cos '2]1:% n e (2.10.22)
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Here frequency of x4 (n) is f5 =§ cycles / sample. Since this frequency is greater than %
it will not be represented properly in discrete ime domain. We can write above equation as,

x4 (n) = cos En%n

= COf En[] +l]n
4

= o [Eﬂn +I?I-l ri]
4

Since cos (2mn +¢ )= cos ¢, the above equation becomes,

x5 (n) = cos Zn-%n

= x;(n) from equation 2.10.20
Thus signal x, (n) is same as x; (n).
Now let us consider the signal x4 (¢). Its sampled version at F, =40 Hz becomes,

x5 (n) = cos Enﬁlﬂ-—i
3 (n) 0
= cos 2:1:-35- . (2.10.23)

Here fy -%. Again this frequency is greater than % Hence it will not be represented
properly. Let us rearrange the above equation as,

x4 (n) = cos EI:E n
4 i
1
= cos 2n[2+—]n
4
= cm{!::-!n+1m%nj
Since cos (-hm +¢) = cos §, above equation becomes,
x3(n) = cos ini n

= x;(n) from equation 2.10.20

Thus x4 (n) is same as x; (n)
Consider x4 (1). Its sampled sequence at F, = 40 Hz becomes,

x4 (n) = cos i‘.nli{}%

= cor 1::15 " - . (2.10.24)

Here f, =§ which is greater than % Hence this frequency will not be represented properly,
Let us rearrange above equation as,
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i

mslﬂ--lgn
4

Cos Eﬂ[3+-l]n
4

cﬂs[ln-irl +1ﬂ-&ﬂ]

xg(n)

Here cos (2rkn +¢ ) =cos ¢ for k=01, 2,3, ... Hence above equation becomes

xy(n) = cos In&n

=x;(n)
Thus x4 (n) is same as x; (a)
Comments :

1. Here all the four signals have same discrete time sequence. ie. x;(n)=x;(n)=
Xy(n)=x4(n) This happens because f,, f;andf; are greater than % which is

maximum discrete time frequency that can be represented.
2. The relationship between F,, Fy and F; and F, are as follows,
Fy = Fy +F, =10+ 40 =50 Hz
F; =F+2F, =10+2x40=90H:
Fy = F{ +3F, =10+3x40=130Hz
These Fy, Fy, Fy are called alias of F| at F, =40 Hz.
This can be generalized further :
All the frequencies of I:F', +k F,],.E:!.ll-’c...- will be alias of F, at sampling
frequency of F,.
2.10.3 Aliasing

The concept of aliasing was introduced in last example. The maximum signal frequency
Foax » that can be represented properly in discrele ime domain is given as,

F 1 .
F S i = — By equation 2.10.17
mmax kT Y &g

Corresponding to this, there is maximum discrete time frequency which is given as,
1

F max 2
If the maximum signal frequency is more than % then the corresponding discrete time

frequency is more than % As a result of this aliasing occurs. In aliasing, the higher

frequencies take the form of lower frequencies. In example 2.10.1 we observed that all the
signal frequencies (Fy +k F,), k=123, ... are represented as F; only. This can be verified
easily,
x () = A rur[lt{ﬂ + & Fl,}r]. k=123,...
The corresponding sampled version of this signal becomes,
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F +kF,

x;(n) =Acos|2n 5
¥

. n
By putting + = —
ﬂ] ¥ puting 3

i

= A cos 1ﬂkn+2nﬂu:|

Since cos (2rkn +¢ ) = cos ¢, the ahmre equation becomes,
x; (n) = A cos IIF' ]

L I

This shows that all sequences x; (n), k=L 23,... have same frequency of F| Hz. Hence
all the frequencies of Fy + F,, F| +2F,, F, +3F,, ... etc are called alias frequencies of F; at
sampling frequency F,. Such alias frequencies are infinite. It can be verified easily that
F,=F, F,=2F, F, =3F, ... etic are also alias frequencies of F, at sampling frequency F,.
This concept is illustrated in Fig. 2.10.4. This figure shows that the relationship between 'f

- . F, F . C . . .
and 'F" is linear in the range -—azisF-:: Eﬂ And there is no ambiguity or aliasing in this

range. Here % is also called as folding frequency, since all frequencies are reflected or folded

with respect to this frequency.

Discrate time
f 4 trequency

/

Fs Fi*Fg Emllnum time

/ﬁ'lq'-llﬂl:ﬁ-'

Fig. 2.10.4 Frequencles F,, Ffy + F;, F; - F; etc are represented by
same frequency f,. Actually f; represents [F-, +kF,},k=t1,iE,i:!,...,
such infinite number of frequencies

2.10.4 Quantization %

When the analog signal is converted to discrete time signal, it is given to quantizer. The
guantizer converts the continuous amplitude signal to discrete amplitude signal. Each sample is
represented by fixed number of digits in the processor. These digits determine the discrete
amplitude levels. For example if the processor uses 4 bits to represent data, then it will have
2% =16 different levels. Consider the quantization of the following signal,

x (m)=10(09)" for HED}

- (2.10.25)
=0 for n<0
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This signal is obtained by sampling x, (1) =10(09)" with sampling frequency of F, =1Hz
First 10 sample values of x (n) are given in Table 2.10.2. The value of x (n) is then quantized
to nearest integer by rounding operation. This quantized signal is denoted by x, (n) and shown
in table 2.10.2. Observe that x_ (n) has fixed amplitude levels. Fig. 2.10.5 shows this
quantization operation Erﬂp]‘l.iﬂﬂill}’. This figure shows the continbous time signal
X, (1)=10.(09)', The figure also shows the sampled signal x (n)=10.(09)" with () such dots
-on the curve of x, (r). The samples of x(n) are quantixed to nearest integer by rounding

operation. This quantized signal x,(n) is shown in Table 2.10.2. Fig. 2.10.5 shows the
guantixed samples ||:|f.:.r {n) by () such dots. Observe that quantizer has 16 levels (0 to 15).

Please refer Fig. 2.10.5 on next page.
Table 2.10.2 Quantization and encoding of x (n) =10(0.9)" into four digits

n |Discrete time signal| Quantized signal | Quantization error | Encoded digital
x(n)=10(0.9)" |x, (n) by rounding | e (n)=x, (n)-x(n) signal
0 10 10 0 1010
1 9 9 1] 1001
2 8.1 B - 0.1 1000)
3 7.29 7 - (.29 0111
4 6.561 7 0.439 o111
5 5.9049 6 0.0951 0110
] 5.31441 5 - 031441 0101
7 4. 782969 5 0.217031 0101
) 43046721 4 - 03046721 0100
9 387420489 4 0.12579511 0100

The difference between the two quantization levels is called as guanrization step or
resolurion. The quantization siep is denoted by A. As shown in the figure the quantization step
is, :

Quantization step A = |

The guantizarion error e, (n) is defined as,

Quantization error e (n) = x_ (n)-x(n) e (2.10.26)

The quantization error in rounding operation 15 limited o [ﬂ Thus,
: |
Maxi tizati =|a (2.10.27
aximum quantization error ¢, () pax = 5 vee 121027

This is clear from the calculated values of e, (n) in Table 2.10.2. Here since A = 1. The
maximum quantization error is,

LYY
o Bl
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1100 12
1011 1
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xg(t) = 10 {09
001 9 <
1000 8 AR
011 71 W
0110 8 x(n) = 10 (0.9)"
(12 (1} I
0100 4
001 3
0010 2
0001 1
0000 n
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I—Sanmlmpnﬂm

T =1 sac.

Fig. 2.10.5 Quantization and encoding in A/D converter

Thus error is less than +05.
In general, the quantization step is given as,

A =1mu = X min

L-1
Here A is quantization step or resolution.

v (2.10.28)
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X max 15 maximum value (o be represented
X min 18 minimum value to be represented
L is number of levels.
Here, from Fig. 2.10.5 we have following values of above guantities, A —H = 1 which

15 same as earlier.

If number of levels are ingreased, then there is small quantization step. This results in
small quantization error, and the signal is represented more accurately.

In quantization operation, the signal is converted to a fixed quantization level. This
conversion is done either by truncation or rounding operation. This always results in net loss
of information. This loss cannot be recovered. Hence quantization process is irreversible
process. The only way to reduce this loss is to increase the number of quantization levels. For
every application the ratio of signal to quantization error is specified, such that information
loss is within the tolerable limits.

2.10.5 Encoding

After quantization, theé next operation is encoding. Each quantization level is assigned a
unique binary code. In the encoding operation, the quantized sample value is converted to the
binary equivalent of that gquantization level. Fig. 2.10.5 shows the binary values for
quantization levels. Since there are 16 quantization levels, 4 bits are required. Thus each
quantized sample is converted to four binary digits. Table 2.10.2 shows the digital encoded
signal for each sample of x(n). The bits are demoted by b’ and they depend upon the
quantization levels. i.e.,

2* 2L .. (2.10.29)

or ' b = log, L .. (2.10.30)

Thus the number of binary digits required are smallest integer greater than or equal o
logsL. In Fig. 2.10.5, L=16 hence b=log;16=4 bits. The standard A/D converters are
available with 8, 16 or 24 bits. Obviously, a 24 bit A/D converter will have better resolution
compared to 16 bit one. The section of the bit length is done on the type of signal to be
coded.

Normally sampling, quantization and encoding operations are performed by the single chip
or device and they are commonly called A/D converters.

2.10.6 Sampling Theorem

The sampling theorem provides the standard mathematical base for sampling and
reconstructing the signals. Selection of the sampling frequency F, is important issue. This
frequency is related to frequency content of the signal to be sampled. If maximum frequency
content of the signal is known, then it is possible to select sampling frequency correctly.
Earlier in this section we have established that the maximum frequency F_,, of the signal
should be less than or equal to half of sampling frequency F ie.,

Fran S % from equation 2.10.17 - (2.10.31)

This means the sampling frequency should be at least double of the maximum signal
frequency. Let us consider the more general range of signal frequencies,

5 < .F'";-'ﬂ from equation 2.10.16 - (2.10.32)

2 - 2
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We have seen that the signal frequencies in this range are represented in discrete time
without ambiguiry. But if the signal frequency is outside this range (see equation 2.10.32), then
aliasing occurs. Because of aliasing the frequencies are not represented properly and they are
lost during sampling. Since negative range of frequencies in equation 2.10.32 are just of
mathematical interest, we can state that the sampling frequency should be at least double of the
maximum signal frequency i.e.,

Sampling frequency F, = 2 F,, from equation 2.10.3]1 and equation 2.10.32 .. (2.10.33)

If the sampling frequency satisfies this relationship, then all the signal frequencies will be

represented in discrete time properly [f.e.—lz =f= —;—} and there will be no ambiguity i.e. no

aliasing.

MNormally it is possible to detect the maximum signal frequency F,, depending upon the
type of the signal. For example speech frequencies are in the range of 50 to 5000 Hz. Hence
Fiax =5 kHz can be selected for speech. Similarly TV and video signals have the bandwidth of
5 MHz. Hence F,,, of 5 MHz can be considered for such signals. Another example is of
ECG signal. It contains major components upto 75 Hz. Hence F,,, can be selected
accordingly. Once the maximum signal frequency is fixed up like this, then the sampling
frequency can be taken as F, =z F_ . to avoid aliasing.

Statement of sampling theorem :

" A continuous time signal can be completely represented in its samples and recovered back
if the sampling frequency F, = 2B. Here F, is the sampling frequency and B is the maximum
frequency present in the signal. That is, F,, =B.

The theorem says that the information of the signal is completely represented by its
samples if F, = B (Here F,,, = B).

And also the signal can be obtained back from its samples if F, = B (Here F,, = B).
Thus there are two parts of sampling theorem. The first part is about sampling and second part
i5 about reconstruction from samples. For the reconstruction of the signal an interpolation
function is used.

Nyquist rate :

When the sampling rate becomes exactly equal to 2B (i.e. 2F, ) samples per second for
the signal bandwidth of 'B' Hz, then it is called Nyquist rate. Then the nyquist interval is
obtained as,

Nyquist interval = —— = . (2.10.34)
2B 2F,..
and Nyquist rate = 28 =2 F., - (2.10.33)

The proof of sampling theorem needs the knowledge of Fourier transform. The proof of
sampling theorem is presented in Appendix.

Ex.2.10.2 Consider the signal x , (1) =10 cos 2n(1000) t + 5 cos 2n(5000¢) is to be sampled.

i} Determine the Nvguist rate for this signal,
(i) If the signal is sampled at 4 kHz, will the signal be recovered from its samples?
Sol. : (1) Consider the given signal
x,41) = 10¢cos 2u(1000) ¢ +5 cos 2m(S000) ¢
Clearly. this signal contains two cosine waves
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Fy = 1000 Hz and A, =10
and Fy = 5000 Hz and A, =5 .
Since the highest frequency in the given signal is B = F,, =5000 Hz, the nyquist rate.is
given from equation 2.10.35 as,
Nyquist rate = 2 F_,, = 2= 5000 Az =10 kHz
(ii) This signal is sampled at F, =4000 Hz. When the signal x_ (r) is sampled, we get
x(n) as,

x(n) = Iﬂcwﬁrrﬂn +5cw1mﬂn
5 &

= 10 cos Enlm}

n+5cos2n n

= 10cos in(l]u + 35 cos En:[i]n
4 4

The second term can be rearranged in above eguation as,

x(n) =10cos 1n[%]a+5cm 2m[|+%]n .

= |0 cos In[i]n +5cos [Iun +111:% n] o (2.10.36)

Here the second term can be simplified as,
m.:(!nnk+¢) =cosd for k=123, ...
Hence we can write equation 2.10.36 as,

x(n) =10¢cos I:rl:[ljn + 5 cos Zn[l]n
4 4
= 15 cos En[iju - . (2.1037)

This is the sampled signal. Observe that there is only one frequenc}rf=:1i in the sampled

signal. When this signal is reconstructed we get,
xg, () =15 cos 2n{1000) ¢ from equation 2.10.37 - (2.10.38)
Here observe that the reconstructed signal contains only one frequency of 1000 Hz and
amplitude of 15. Thus the effect is that one signal of F3; =5000Hz is completely lost and
amplitude of F, =1000 Hz is increased. This shows that with the sampling rate 4000 Hz, the
signal is not recovered from its s-am.pl:s This is because the sampling theorem is not satisfied.
The nyquist rate as calculated is (i) is 10 kHz. Hence minimum sampling frequency should be
10 kHz to avoid aliasing.

2.10.7 Anti Aliasing Filter

When processing the analog signal osing DSP system, it is sampled at some rate
depending upon the bandwidth. For example if speech signal is to be processed the frequencies
upto 3 kHz can be used. Hence the sampling rate of 6 kHz can be used. But the speech signal
also contains some frequency components more than 3 kHz, Hence a sampling rate of 6 kHz
will introduce aliasing because of such frequency components. Hence it is necessary that the
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speech signal should not contain any frequencies above 3 kHz strictly. This can be the
situation with other signals also. Hence the signal should be strictly bandlimited to avoid
aliasing. The bandlimiting of the signal means o mku:e that it contains frequencies within the
specific band only.

The signal can be bandlimited by passing it TJlmugh a filter which blocks or highly
attenuates all the frequency components outside the specific bandwidth. Such filter is normally
a low pass type of filter. For example, a speech signal can be passed through the low pass
filter of bandwidth 3 kHz. Hence all the frequency components below 3 kHz are passed
through the filter. And all the frequency components above 3 kHz are blocked or attenuated by
this filter. Hence with the nyquist rate of sampling (i.e. 6 kHz), there will be no aliasing, Thus
as analog is passed through a filter and then it is given to the A/D converter for sampling.
This filter avoids aliasing due to high frequency components and hence it is called Anti
aliasing filter. Fig. 2.10.6 shows the block diagram of DSP system for an analog signal.

Antigliasi ' igital Reconstruction
Analog | ARSIESNG 0] op  |xin) | DS vin) | oo | v | RECERECion] v
gignal prefilter convarier processor convartar postfiter

Fig. 2.10.6 Block diagram of a DSP system for processing of an analog singal

As shown in the above figure, the analog signal is first passed through antialiasing filter
for bandlimiting. This filter is also called prefilter. Then the signal is given to A/D converter
for sampling. The sequence x (n) is processed through DSP processor and the output sequence
y(n) is applied to D/A converter. The signal y(¢) from the IDVA converter is passed through
the reconstruction filter. This is interpolation low pass filter and used 10 generate smooth signal

from individual samples. The reconstruction filier is also called posifilter. Its bandwidth
depends upon the frequency content of the signal to be reconstructed.

Ex.2.10.3 A digital communication link carries bindary coded words representing samples of an
inpur  signal x, (t)=3cos 600nt +2cos B0D ne. The link is operated at 10,000
bits/sec and each input sample is quantized into 1024 different voltage levels.

(i) What is the sampling frequency and folding frequency ?

(if) What is the Nyquist rate for the signal x (1) ?

{iii) What are the frequencies in resulting discrete time signal x (n) ?

{iv) What is the resolution'A' ? [Dec - 99]

Sol. : (i) Each input sample is quantized into L =1024 levels. The number of bits/sample are
denoted by 'b' and are given by equation 2.10.30 as,
_ b =log, L
' = log 1024 = 0810 1024
logyg 2
= 10 bits
The bit rate in the digital communication link is given as
Bit rate = samples/sec » bits/sample v (2.10.39)
In above equation Bit rate = 10,080 bits/sec and 10 bits/sample. Samples/sec is nothing but
sampling frequency F,. Thus,
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F, (samples/sec) = _Birrate
bits [ sample

_ 10,000

Co10

= (M) Hz
Folding frequency is the frequency after which folding or aliasing starts. We know that

aliasing starts after % Hence folding frequency becomes,

Folding frequency = % =500 Hz

(ii) There are two frequencies in x (1), i.c.,
x, (1) =Ajcos InFit+A;cos2nFyt - (2.10.40)
The given signal is,
x4 (r) = 3cos 600 nt + 2 cos BOO wt
The above equation can be rearranged as,
Xo(r) = 3cos In300t + 2 cos 2ndlt e (2.10.41)
Comparing above equation with equation 2.10.40 we get,
Fi =300Hz and A =3
Fy; =400Hz and A, =2
Here F,, =F; =400 Hz
MNyquist rate is given by equation 2.10.35 as,
Nyquist rate = 2 Foax
= 2% 400 =800 H:
(i) The sampling frequency is F, =1000 Hz.
The discrete time signal x (n) is given by putting ¢ = ..T:Fi in equation 2.10.41. ie.,

&

x(n) = 3 cos 21300 —— + 2 cos 2x 400 % —
1000 L

=3cos 2m03n+2cos 2204 n .. (2.10.42)
The discrete time signal having two frequencies is represented as,
xi{n) =Ajcos2nfyn+A; cos2nfan
On comparing above equation with equation 2.10.42 we find that there are two frequencies
in discrete time signal. i.e.,
fi =03 and f,=04

Here both the frequencies are distinct since they are maximum valee uf% e 0.5,

(iv) The two amplitudes are A, =3and A, =5 Hence maximum amplitude will be
Xpay =A) +Ay =5 Since these are sinusoidal signals, minimum amplitude will be
Xpin ==X max =— 3. From equation 2.10.28 step size A is given as,

A = X max — X min

T L-1



Digital Signal Processing 134 Discrete Time Signals & Systems

o Putting values in above equation,
5=(=5)
1024 -1
A = 0.009775

Ex.2.10.4 Develop an algorithm for sampling a signal having frequency range of 10 Hz to |
kHz. You can use an 8 bit A/'D converter with conversion time af 50 psec. Store at
least 1024 samples of signal in a data file. [Dec - 99]
Sol. : Before actually going to the steps of algorithm we should discuss few important points
in such case. The A/D converter can be used along with PC or DSP processor. Hence the
conversion routine can be written in assembly language or advanced language like C/C++ for
PC. If it is DSP processor, then conversion routine can be written in assembly language of
DSP processor. We will assume that the A/D converter is interfaced to PC or DSP processor
in usual standard way.
The input signal frequency is 10 Hz to 1 kHz. The conversion time of A/D converter is
J0p sec. This means the individual samples will be separated by minimum of T, =50 psec.
This imposes a limit on maximum sampling frequency. i.e.,

1 1
Foimary = = = 20,000 Hz
: Hmaz) Toin S0 psec

Thus the sampling frequency should be less than 20 kHz for given system.

The A/D converter gives 8 bits/sample. This means each sample requires 1 byte. We have
to store 1024 samples in the data file. This means the data file size will be of 1 K bytes.

The steps of the A/D conversion algorithm are shown below :
Algorithm :

1. Get the name of the data file from user in which digital data is to be stored. If the
name is not given, use default name.

2. Open the existing data file with specified name to write binary coded samples. If file
doesnot exist, create new one.

3. Injialize the A/D converter channel from which the signal is t© be converted.
Sogoetimes this initialization is done when start of conversion command is given.

4. Imtialize the count for 1024 samples. Fix up sampling timeffrequency if specified,
otherwise use default values.

-5, Wrnte header into the data. file consisting of sampling rate, number of channels of
input signal, minimum and maximum amplitodes of input signal, number of
bits/sample, total number of samples, storage mode of data file etc.

6. Give stant of conversion (S0C) signal to A/D converter. Sometimes writing into the
output port of A/D converter performs this job.
7. Wait for the conversion time. Sometimes this conversion time is used for processing

PUrposcs.

Read digital value of the sample from output port of A/D converter,

Store the digital value of the sample in the data file in the specified format.

0. Wait till the sampling time “T". This time includes all delays like conversion, storage,

processing etc. '

11. Check whether 1024 samples are stored. If samples are less than 1024, repeat steps 6

to 11. If 1024 samples are stored, then go to next step.

_—

=10 g0
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12. Stop A/D conversion process. Close the data file and remrn control to the user
indicating that 1024 samples are digitized successfully.

2.11_Implementation of General Difference Equation using C

We have seen earlier that a recursive as well as nonrecursive LTI systems can be well
described with the help of constant coefficient difference equation. Almost all the discrete time
systems can be implemented with the help of this difference equation. The generalized form of
such difference equation is given by equation 2.8.19 as,

-1
y¥(n) =—£ ay }'I:ﬂ—k]+)t b, x(n-k) - (2.10.1)
k=1 k=0

[Here M is written as M -1, it doesn't make any difference]
The above equation can be expanded as,
¥(n) = -[n:i| yin=1)+a; y(n—=2)+ay y(n-3)+ ]
+hyx(n)+byx(n—-1)+by x(n-2)+... w (2.11.2)
This equation is implemented by the C program.

file name : diffegn.cpp

£ Implementation of general difference eguation based array mapping
£

f/ This program implements the difference eguation of the LSI

ff system which is giwven as,

£

i yia) = =[al*y(p=1}+a2*y(n=-2)+ad*y(n=-3)+........ 1

i +bl*x{n} +bl*x (n=-1}+b2*x (n=2}+. ...

L

ff Inputs: 1. Number of coefficients ak, dencted as N.

!/ : 2. Values of al,a2,ad,..... ete.

L 3. Humber of coefficients bk, denoted as M.

I 4, VYalues of bl,bl,B2,..... ete.

A 5. Humber of samples of =(n), denoted as L.

Fi 6. Values of x{0),=(1),%{2},;..... eko.

ff

P Cutputs : The computed output seguence y{n}

iy according to the specified format of

! difference egquation as above,

£

S Assumptions l. The number of samples computed for yin)
o are same as number of input samplas,

Iy 2. Bll initial conditions are assumed zero,
ff

Py Hote hetually there is no specific formula

i for number of samples in y(n). Because

! samplas in yin) depend upon type of input

L xin}), coefficients ak and bk and initial conditions,
’

s s s e e e e e e e
tincluda<stdio.h>

f#include<conio.h>
fincluda<math.h>
wvold maini)
[
Float a[l0],b[10],=[100],¢[100],;s5umin k,sum¥n k;
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int MM, k,L,n;
clracr():;

printf (" Implementation of general difference”
" eguaticon based array mappingin™);
printf (*vnEnter the number of coefficients alk] i.e. H = ");

scanf ("&d", sM) ; Y number of ak i.e M
printf ("Enter the wvalues cecefficlients alk] “n¥);

forlk = 1; k <= MN; k++) S wvalues of al,a2,ad,...ste.
{

printf{"a%d = ",k});
scanf ("$£",6al(k]);
I

printf (*wnEnter the number of coefficients blk] i.e. M = ");

scanf ("%d™, &M} ; ff number of bk i.e M
printf ("Enter the wvalues coefficients blk] “wWn");
forik = 07y k < My k++) ff wvalues of bO,bl;b2;...etc.

[
printf("b%d = ",k);
scanf("RE",&b[k])
]
printf{"\nEnter the number of samples of xim) ");:

scanf ("%d™, L) ; Y number of samples of xin)
forik = 0 k < L; k++)
{ S ovalues of =(0),.x(1),.=x{2),...atc.

primtf("=x{kd) = ",k);
scant ("REY . Ex([k]) s
|

printf("\nThe computed wvalues of vyi{n) are as follows...\n");
forin = 0y n < Ly n++) S/ computation of win)
{
sum¥n_k = 0;
gumin_k = 0;
forlk = 1; (k <= nl&&lk <= H); k++)
{ /4 computation of al*yin-l)+a2*yin-2)+ad*yin-3)+......
gum¥n_k += af[k] * y[n-k];
l
far(k = 0; (k <= nj&&(k < M); k++)
{ Ff computation- of bO*x(n)+bl*x(n=1)+b2*x(n=2)%......
sum¥n_k += b[k] * x[n-k]:
1
y[n] = - sum¥n_k + sumin_k; /7 final wvalue of yin)
printf("\ny(%d) = %f",n,y[n]}:

F End of program==———————c=s====s=sss—c=scss=s—ss==

The program first accepts number of coefficients a; (i.e. N) and &, (.e. M). Then the
program accepts values of a; and by . Then the input samples (L) and their values are accepted
by the program.

The program computes y (n) upto 'L’ number of samples. Thus y(n) has same number of
samples as in x (n). This is assumption. Actually there is no relationship between the number
of samples in the output y(n) and input x (n). Nonzero values of y(n) can be obtained even if
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x(n) is absent. Here, just to simplify the program, output samples are taken same as input
samples.

In the program there is last for loop for computation of y(n). In this loop there are two
for loops. i.e. first for loop is,

for(k = Li(k<= n)& &k <= N);k++)

{

sum¥n_k += a [k]*y[n_k];

1

This loop implements first part of equation 2.11.2, i.e.,

iy ]"{H-u*ﬂz }'{H'I}‘P fy _'Ffﬂ—.]}‘l‘-".“ - {Erllj}

Here the sum is stored in sumYn_ k variable. Observe that the for loop starts from
k = 1 But upper condition is (k<= N) &&({k<=N). This means equation 2.11.3 is computed
for k £ n and k < N. This is done since we don't know y(-1), y{- 2)....... etc. Indirectly all
these values are assumed zero. This is crucial part of the program.

The next for loop computes second part of equation 2.11.2. ie.,

bgx(n)+byx(n-1)+byx{n-2)+... v (2.11.4)

And the corresponding for loop in the program is,

for(k = 0; (k<= n)a&(k< M; k+ 4)

{

sumXn_ k += blk] *x[n_k]:

}

The sum of equation 2.11.4 is stored in sumXn &k vanable. Here observe the difference.
This for loop starts from k = 0. Hence there is little difference in upper condition, i.e.
(k<=n)&&(k< ML Here it is k<M and not k<M. Similarly since we don't know
x(=1),x(=2),.... etc ; this condition avoides these values by using (kK <= n)L This means
equation 2.11.4 is computed for k < nand k< M. This indirectly assumes x (-1), x (-2),...etc.
to zero. This is also crucial part of the program.

To run the program

Let us test this program for following values :

N =1, a =1
and M =1, by =1
Putting these values in equation 2.11.2 we get,
yin) =-a y(n-1)+byx(n) w (2.11.5)

Let the input x (n) has 10 samples as follows :
x(n) ={Lﬂ.“.ﬂ.ﬂ.ﬂ.ﬂﬂ-ﬂ.ﬂ}
Thus x (0)=1 and rest all x (n) have zero valoes.
Since a; =land by =1 in equation 2.11.5 we have,
y(n) ==y(n=1)+x(n) . (2.11.6)
With n =0, above equation becomes,
y(0) =-y(-1)+x(0)
Here program doesn't compute y(—1) since n< k. Hence y(-1) is assumed zero. Thus,
y(0) =x(0)=1 since x(0)=1
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With n =1 in equation 2.11.6 we have,
vil) ==-v(0+x(D)=-1+0=-1
Similarly, Y(2) =-y()+x(==(-1)+0=1
y(3) ==-y(2)+x(3)==(1)+0=~1
Thus we keep on getting y(n), even if x (n)=0. The program computes upto v(9) since
input x (n) is specified upto n =9, Thus v(n) is,
}I{n.} = {L_ILL_LL_I!I-_LL_LLuu}
The results of the program are shown below for the same conditions as calculated above.

Observe that program provides same values of y(n)
————————————————————————— T B R

Implementation of general difference equation based array mapping

Entar the number of coefficients afk] i.e. W = 1
Entar the wvalues coafficients alk]
al = 1

Enter the number of coefficients blk] i.e. M = 1
Enter the walues coefficients blk]
B0 = ]

Enter *he number of samples of x(n) 10
® (D)
(1)
w2}
®(3)
w4}
x{5])
iG]
{7}
®{B]
xi{9])

[= = s T T e e = =T

The computed wvalues of yin) are as follows...

y(0) = 1.000000
y(1l) = =1.000000
y(2) = 1.000000
y(3) = =1.000000
y(4) = 1.000000.
y(5) = =1.000000
y(6) = 1.000000
:,rl:'.r] = =1.000000
y(8) = 1.000000
¥y(9) = =1.000000

2.12 Generation of Waveforms Using C

In this section we will see about how the discrete time sequences for sine, cosine,
exponential, square, sawtooth and random signals are generated. These sequences can be
generated using "C' as well as standard signal processing sofrwares such as MATLAB.
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Here we present the program in 'C' which generates the samples of cosine, sine, square
exponential and random signals. The source code of the program is listed below :
file name : signals.cpp

frm==  Gepneration of samples of some standard signals =======-= */
ff

ff This program generates fthe samples of cosine, sina, sgquare,
! exponential and random noise at specified sampling

o frequencies.

i

£ Inputs : 1. Freguencies of cosine, s3ine and

r SquUare wWaves.

i 2, Sampling freguency

ff 3. Cheice for the saignal to be generated.

L

Fr Outputs : 1. The samples of the discrete time

I signal are stored in the array.

i £. The discrete time signal is displayed

M on the screen in graphics mode.

i

i Agzsumptions : The number of samples of the signal

I and their amplitudes are assumed in the

’r ‘program.

e

finclude<atdio,.h>
#include<conio.h>
#include<math.h>
#include<stdlib.h>
finclude<qraphics .h
wald mainf()
{
float =x[700)A, F:Fs.,n;¥;
int i,gd,gm,X¥,choice,k;

clrscr{)};

printf(" Generation of discrete time =signals ‘")
printf{"\nEnter the frequency of analog signal F = F);

scanf ("%f",&F); i frequency of the =signal
printf("Enter the sampling freguency Fz = "j; .

scanf ("SE",; &Fs); ffsampling frequency
printf{"\nEnter your choice™);

printf{"\ncosine wawve (Enter 1}"); /focosine wawve
printf{"\nsine wave (Enter 2)"};: fleine wave
printf{™"\nsquare wawve ([(Enter 3)}%); ffaquare wave
printf{"\nexponential signal (Enter 4)"}; //exponential signal
printf{®*\nBandom noise (Enter 5)%nChioce = "}; J/random noise
scanf ("&d", schoice);

i = &40; f/640 samples of the signal will be generated
A = 1.0; Si/maximum amplitude of the signals is 1

switch{choice]
{
cagse 1 : forin = 0O; m < iy n++} J// cosine wave
2[m] = A * gcos{ 2 * 3.1415927 * F * (nfF=s));
break;
case 2 : feoerin = 0; m
x[m] = K * =g

< iy n++} S sine wave
in{ 2 * 3.1415%827 * F ¥ (n/Fa)):
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break;

case 3 : k = 0O; MY sguare wave
do
[

for(n=(k*Fs)/(2*Fl: n < ((ktl)*Fs)/(2*F1; n+¢)

| // positive half cycle of aquare wave
¥[nl = n; if (n>ilbreak;

1

forin=({k+1)*Fs) S (2*F); n<{{k+2)*Fs)/(2"F); n++)

{ /4 negative half cycle of aguare wave
#[n] = =A; ifin>i) break;

1

k=k+2; JS/this count is modified for next cycle

} whileln<i);

break;

case 4 : forim = 0; n <€ i; n++) // exponential signal
¥[n] = A * expl -(n/Fs)):
break;

cage 5 : forfm = 0 n < iy m+e#) J/ random nolse
#[n)] = (float)(rand()®1000} L000.0;
break:

f e next part of the program displays the generated signal

¥ = ¥ = 0;

gd = DETECT:

initgraphi{&gd, Sgm, "™} ; Ff initialize =screen in graphics mode

for(n = 0; n < i; n++)

[ /Y this loop displays 640 samples of discrete time signal
¥ = 200 - x[n]*100; ffscaling of x(n) for proper display
putpixel (XY, WHITE); //x(n) is displayed as putting pixels
HK++

}

getch ()
clozegraphi() ;

e End of program===-==sssresscsccsssssssssssss==s

The program asks for frequency 'F of analog signal. This frequency is asked for all the
waveforms, but it is ignored for exponential and random noise signals. The program also asks
for sampling frequency ' F,'. Then the choice for the sequence to be generated is asked.

This program displays the generated sequence on the screen in graphics mode. A resolution
of 640= 480 is assumed. Hence 640 samples can be displayed on the screen. Hence program
generates 640 samples of sequence. Observe the statements in program.

i = 640; « This statement is counter for 640 samples.

A = 10; + This statement sets maximum amplitude of samples.

The next switch statement generates samples of the signal depending upon choice
given by user,

Example : How sine wave is generated in program ?

We know that sine wave (analog) 15 given as,

x,(t) =Asin(2nF1) v (2.12.1)
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A discrete time sine wave can be obtained by putting r=nT=% since T=Fl-. Hence
L ¥

above equation becomes,
i
x(n) = A sin EﬂF-i]
% Fi

Here value of n=31415927 substituted in the program. i.e.,

x(n) = Asin| 2x31415927 = F :i] e (2.12.2)

This statement 15 implemented in the program observe case 2. There is a for loop
which operates from n = O to n < I (le. m<640) And this for loop executes following
slatement :

x[(n] =A * sin (2 * 31415927 * F * (n / Fs))

The above 'C' statement implements equation 2.12.2. Depending upon F and Fs, samples
of sine wave are generated.

Cosine wave

The samples of cosine wave are generated by using the same logic discussed for sine
wave. Case 1 statement generales cosine wave.

Logic for generation of square wave :

The logic for generation of square wave is very straight forward. Fig. 2.12.1 shows the
waveform of square wave.

From above waveform we can write following,

xglt)
A ) 4 N
A 5F A 5F A 5F t
of 1 3 5

Fig. 2.12.1 Waveform of square wave of frequency F.
Its various periods are marked in terms of F

x,(t) =A, for ﬂﬂ.‘{l iﬂr{i;is.‘{i;.,...
F 2F 2F 2F 2F
==A, for LE; 2.3 £r-ci iﬂmi; .....

2F 2F"2F 2F 2F 2F
The discrete time version of this signal is obtained by putting t=nT=- in above

equation. ie.,
x(n)=A, for ﬂ:ﬁ—-r:L isi{i 4 l{i; .....
F, 2F 2F F, 2F 2F F, 1F
==-A . for Lﬂi{;i;i i i i i{i: .....
2F F, 2F 2F F, 2F "IF F, 2F
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The above equation can be further simplified as, -

xin)=A for 0 f.n-u:i; EF’ﬂn{JF" ;4F'5m:5'F': .....
2F 2F 2F 2F 2F
=—Afnr££u-: EF‘;EF’EH{'iF' ;SF'EH-:&FF;,-,_,
2F 2F 2F 2F 2F
. (2.12.3)
The above equation can be generalized as follows :
A for ;‘-sn-:-u-—-—“;ﬁﬂ
xi{n) = o (2.12.4)
4 for KTDE _ (k+2)F,

2F

The above equation is implemented by the do-while loop in case 3 statements to
generate square wave in the program. The first for loop implements positive cycle ie.
x(n)=A of the square wave and second for loop implements negative cycle ie. x(n)=-A
of the square wave, The value of ' k' is incremented by 2" as it is clear from eguation 2.12.3.

Generation of exponential sequence :

The decaying analog exponential signal is given as,

x, () =Ae . (2.12.5)

x(n) can be obtained by puning:=nT=Fl. ie.,
13
n

x(n)y=Ae s . (2.12.6)

This equation is implemented by the case 4 statements. ie.,
x[n] =A + exp(- (n / Fs));

The for loop generates 640 samples of exponential sequence and stores in x [n].

Generation of random noise :

The random noise can be generated by number of ways, A standard rand( ) function of
'C' is used here to generate samples of random noise.

Displaying discrete time signals on screen :

The initgraph function initializes screen in graphics mode. Note that the "'bgi' files
should be present in the same directory in which this program is executed. Otherwise proper
path should be provided. The for loop displays 640 samples as pixels on the screen. The
statement,

¥ =200 — x[n] * 100 ;

Scales sample value for proper display on the screen. The samples are displayed on the
screen by 'putpixel’ function.

To run this program :

Let us test this program. The signal frequency is F=10Hz sampling frequency is
F, =1000 Hz and 'sine” wave is selected. The results of program are shown below :

.I'l_-‘l ------------------------ results —————————mmssm—scrssrsss s e EE -
Generation of discrete time signals



Digital Signal Processing 143 Discrete Time Signals & Systems

Enter the frequency of analog signal F = 10
Enter the sampling freguency Fs = 1000

Enter your choice
cosine wave (Enter 1)
gine wave (Enter 2)
sgquare wave (Enter 3)

exponential signal (Enter 4)
Eandom mnoise (Enter &)
Chioce = 2

i
]
]
]
¥
L]
]
i
]
]
]
[
]
i
L]
§
i

!

]
Wi
" ¥ s (¥ W

Fig. 2.12.2 A sine wave of frequency 10 Hz and
sampled at 1000 Hz displayed on the screen

2.13. Linear Convolution using 'C'

Linear convolution is one of the most important operation in signal processing. It relates
the input, output and unit sample response of the system. i.e.,

vin) = x(n)*hin)

i)

= 3 x(kYhin-k) . (2.13.1)

k=-m
Here ki (n) is the unit sample response,
x (n) is the input sequence and
y(n) is the output sequence.
The 'C" program for implementing convolution is given below :

fiie name : linconwv.cpp

fHmmmmncnccm=a= Linear Convolution of two SeqUENCES ==—==sscccccs==== *J
H

F This program computes the Linear Conwvolution of two causal
r gequences x(n) and hink.

H!

Pl Inputs - : 1. Humber of samples 1in hin)
F 2. Samples of hin) in the form
i hi0}.h([1),Rh(2],.....h(n=1]

i 3, Number of samples in x(n)
Fr 4, Samples of x{n) in the £form
¥ w[0]),w[1),x(2),.....x[Rn=1]

H

) outputs ¢ Convolution seguence of =(n)

’f and hin}
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i
) Assumptions: The given seqguences are causal.

#include<stdia.h>
#include<conio.h>
¥include<math.h>
maini)
{
float h[20],x[20],y[20],3um;
int W, M.n, k;
clrscri);
printf (" Linear Ceonvolutionlnhn™);

printf ("Enter the number of samples in hiin) = ");

scanf ("%d", &H) ; S/ number of samples in hin)

printf ("Enter the seguence hin}\n");

forin = 0; n < H; n++)

{
printf ("h[%d] = ",n}; !/ Entering the seqguence hin)
scanf ("8£",&h(n]);

I

printf {"Enter the number of samples in x(n}) = ");

scanf ("%d", &M) ; H/onumber of samples in xin)
printf ("Enter the segquence x(n)}\n"};

forin = 0; n < M; n+t)

{
printf("x[%d] = ";n); // Entering the seguence x{n)

acanf (“%£%, &x(n]):
1

printf ("\nThe result of conveolution is..."};

forin = 0 n < (N+M=1}:; n++) Hf convolution caleculatcion
i
sum = 0§.0;
forik = 0; k < M; k++} // summation loop
{
ifin < k |l in-k}>= M) econtinue;

sum += x[k] * hin-kl:

]
y[n) = sum;
peintf ("wny[3d] = %f",n,y[nl);

flmmmmmm e s s e m e End of pProgram =--===s-sssscecm e eneaa

The first for loop is used to enter the sequence h(n) The next for loop enters the
sequence x (n). To make program simple, causal sequences are considered. The last, ie 3™
for loop implements linear convolution of equation 2.13.1. We know that there are (N +M -1)
number of samples in y(n). Hence the upper limit on "n' in this for loop is n< N+ M -1
Since sequences are causal, v(a) starts from n =0. The summation loop is an inner for loop
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M=l
and it implements E x(kYh(n-k) for every value of "n'. In the inner for loop there is one
k=10

statement i.e.,

if (n-:: kllin=k)>= H) continue;

This statement avoids the execution of

sum +=x[k]+h[n-=-k];

if n<sk or{n—k)z N. This is because h(n) is given only for n =0 to N - L SImilarly the
lower limit on k in the inner for loop (i.e. summation loop) is zero, i.e. k=0 since x (k) is a
causal sequence.

To run the program :

Let us consider the convolution l:;f 1
LL1

h = 4 -

(n) |
i l'l
and xin) =1l'1' ,

1

By multiplication method we can obtain convolution of h(n)and x (n) as given below in
Fig. 2.13.1.

Thus the computed output sequence is,
123,21

.

There are 'S' samples in y(n). The results of this program for above example are given
below :

————————————————————————— N
Linear Conwvolution

Enter the number of samples in hin} = 3
Enteér Ehé sedquence hin}

hig] = 1

hil] = 1

hizl = 1

Enter the number of samples in x(n} = 3
Enter the seguence xin}

®[0]
®[1]
n[2]

1
1
1

The result of convolution is...

y[0] = 1.000000
v[l] = 2.000000
y[2] = 3.000000
y[3] = 2.000000
y[4] = 1.000000

R O S N O O I R I e R R R NN NN SRR R RE RS
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Observe that the results of C program are exactly similar to these calculated earlier.
Important equations to be remembered :

1. If analog signal is x_ (¢). Then x (n) is obtained by putting :=nT=Fi. ie.,
h 4

x(n)=x, [:)]

r=nT =—
F-F

2. Linear convolution is given as,
yim)= 3 x(k)h(n-k)= 3 x(n-k)h(k)

k=<0 k=-m

3. LSI system is described by following constant coefficient difference equation.
yin) =~ i a yin=k)+ i by x(n—k)
k=0

k=]
4. Following are important frequency relationships.
(i) mn = E=ﬂ'1"
F]’
. F
(1) =—=FT
f .
{iii) 1 5_;"51 and -mswsn
2 2
{iv) —F’ifiﬂ and —-nF, s F<nF,
2 2

5. Sampling frequency F, 22 F,,

6. Crosscorrelation rey (D = i x(n)y(n=1)

==

= Yx(n+l) y(n)

n=—a
7. Frequently required summation equation,
L Ny Na+l
i =2 8" N,2N,
k=N I-a

If a=1, then above equation becomes

N
i a® =N, -N; +1
k=M

Computer Exercise

1. Consider the 'C' program for general difference equation based array mapping
presented in section 2.11. Modify this program so that it should accept all the data
from data file and store output in another file.
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2

Ll B o .

=

10.
11.
12,

13.
14.
15.
16.
17.
18.

Consider the 'C' program presented in section 2.12 to generate samples of cosine, sine,
square, exponential and random noise signals. Add the function in this program to
generate sawtooth, unit step and unit sample sequences. Your program should accept
number of samples to be generated from user. Also modify the program to write
samples in data file.

A 'C° program for linear convolution is presented in section 2.13. Modify this program
so that it should work for noncausal sequences as well. Your program should accept
input sequences from one data file and store y(n) in another file.

Theory Questions

Define discrete time signals and classify them.
Define and explain unit sample and unit step sequences.
What is discrete time system ? How discrete time systems are classified 7
Explain Linear Shift Invariant (LSI) system.
Explain how any sequence can be explained by weighted impulses.
Prove the formula for linear convolution.
State and explain/prove the properties of convolution.
Prove that the necessary and sufficient condition for LSI system to be causal is,
hin) =0 for n<0
Prove that the necessary and sufficient condition for LSI system to be stable is,
¥ |hik) <o
kem=m
Explain the FIR and IIR systems.
Explain non recursive and recursive syslems.
Explain how LSI systems are represented using constant coefficient difference
equations.
What is autocorrelation and crosscomrelations 7 State its properties.
Explain the frequency relationships between continuous time and discrete time signals.
What is aliasing 7 Explain with the help of an example.
Explain quantization, quantization error and enconding in the sampling of signals.
State and explain sampling theorem and nyquist rate.
What is antialiasing filter ?

Unsolved Examples

Consider the discrete ume sequence as given below :
1 1
rlu-l:ﬂ]= L]-.LL_-._
s

(i) Sketch x (n) (i) find out x (n)u (2 =n) and sketch it.

Hint : First determine w(-n). The delay this sequence by two samples to get

ui{=n+2)oru(2-n) Multiply x (n)-u(2-n)
Ans.:x(m)u(2-n)={1,1,1,1,0,0}
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{iii) Find out x (n =1)&(n - 3) and sketch it
Hint : First delay x(n) by one sample to get x(n =1} Then multiply x{n=1) by
&(n-3).
Ans.:x(n-15(n-3)={0,0,0,10,0}
T.

2. State whether the following systems are (i) Static (ii) Linear (iii) Shift invariant
(iv) Causal and = (v) Stable.
(a) yin)=nxin)
Ans. : Static, linear, shift variant, causal, unstable.
(b) y(m)=ax(n)
Ans. : Static, linear, shift invariant, causal, stable.
(c) }'{H]I=.l"[l'l1]
Ans. : Dynamic, linear, shift invariant, noncausal, stable.

(d) vin)= i x(k)
k== Ans. : Dynamic, linear, shift invariant, causal, unstable.

(e) vimd=x{(n)+3u(n+l1)
Ans. : Static, nonlinear, shift variant, noncausal, stable.
(f) y(n)=gi(n)x(n) Here g(n) is another sequence,
Ans. : Static, linear, shift variant, causal, stable,

il
hinj= 1 1 1

)= 1 1 1

1 1 1 ®

1 1 1 = =

yinj= 1 2 3 2 1
T

Fig. 2.13.1 Convolution of x (n) and h (n)

]
3. The unit sample response of the LSl system is givenu[%] u(n). If the input

H
sequence to this system is [lJ u (m), determine its response.
2 Ans. :

y (n) = [%]n[gm'l -1]
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then x(=n) -Lnx(z_])RDE - Ldid{ 1 . (3.34)

2 n
Proof :

By definition of z-transform we can write,
£

.E[.:{-n}] = Z x(-n)z™"

n= =
In the RHS of above equation let us change the index as —n =m. Hence we can write,
— i
Z[x(-n)] = z x(m)z"™

i = ol

The above equation can be rearranged as follows :

= =i
E[.x {—n}] = z :-:{rrtfl(z")
e =i
X ()

Thus folding the signal in time domain is equivalent to replacing z by ™' in z-domain.
Replacing z by z~! is called inversion. Hence folding or reflection in time domain is equivalent
to inversion in z-domain.

The ROC for X (z) is r < |2< ry, then the ROC for X (;‘1) will be,

F] i k_J {FE

1 <|z]< 1

F2 n

3.3.5 Differentiation in z-domain
This property states that if,

x(n) « 2 X (2)

then nx(n)_z —zdiz X (2) .. (33.5)
Proof ;
Consider the basic definition of z-transform, i.e.,
o
X(@= ) x(mz™"
R= =

Differentiating both the sides of above equation with respect to z we get,
d _ d -n
-Exl'.z} = dz[xinh ]
[ -]

= ) x{n}-:—zz""
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-
= 3 x(m)(-n)z™""

A=—

=
== 3 x(n)n-z "z

=z i [n:[n]]z'"

=-z"' Z[nx(n)] By definition of z-transform.
Z[nx(m] =22 X@)

which is proved. The ROC of Z[n x (n)] is same as that of X (z).
3.3.6 Convolution in Time Domain
Convolution of two sequences is very useful property. It states that if,

xp(n) 2 o X(2)

and Xy (n) L s X5 (D)
then x () exy(n) 2w X (2)-X3(2) .. (3.3.6)
Proof :

Let x (n) represent the convolution of x; (n)and x5 (n). ie.
x(n) =x (n)wx;(n)
el
= ) x (k)xy(n—k) (337

k= —on

By definition, z-transform of x (n) is given as,

X(2) = 3 x(mz™

= —
Putting for x {n) from equation 3.3.7 in above formula we have,
X(2) =Z [x)(n)ex;(n)]
_ { S & (k) xg fﬁ—k}}z'"
nEear | f=—

Interchanging the order of summations in above equation we get,

X(z) = E Xy {k}{ 2 x5 (n —.‘:}z_"} .. (3.3.8)

k= —m i = =i
In the above eguation, the term in | | brackets represents the z-transform of x, (n - k)
From the time shifting property of equation 3.3.2 we have,
Z[x(n-k)] =27 X (2)
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Applying this property to the term in { } brackets in equation 3.3.8 we have,

o]
X(@) = 3 x k)" X0

b= =

s
In the above equation Z Xy (k)-z% represents the z-transform of xy (k) 1e X (z)
k= —m
Hence above equation becomes,
X(2) =X,(2)-X5(2)
Thus the convolution property of equation 3.3.0 is proved. It indicates that the convolution

of two sequences in time domain is equivalent to multiplication of their z-transforms. The
ROC of the product X, (z)-X, (z) is the intersection or overlap of ROC of two individual

sequences.
3.3.7 Correlation of Two Sequences

This property states that if,

xp(n) o 2 LX) (2)

and szﬂ:l -Ll-xz {I}
then Y x;(n)xy(n-0) «ZaX,(2)X, (.-:‘]) .. (3.3.9)
T
Proof :
Here the comrelation of two sequences x, (m)and x, (n) is denoted as Fey 3 ({) and is
given as,

Fepeg () = i xy(n)x; (n=1) By definition

n=—

Let us rearrange the term x5 (n —1) as x5 [~ (/-n)] in above equation ie.,

Fepsq () = i xy(n)x, [—{I—n}]

n=—a

The RHS of above equation represents the convolution of x ([)and x5 (/). Hence we can

write above equation as,
rlll:] () = x) “]*II (=0
By taking z-transform of both the sides of above equation,
Z[re, 59 u]] = Z [x; (D=x4 (D]

From the convolution property of equation 3.3.6 we can write RHS of above equation as

multiplication of z-transforms of x; (I)and x4 (=I). i.e,

Z[reyxa (D] = Z [x,(D] Z [x2 (-]
In the above equation Z [.tl {f}] =X, (z). And from the time reversal property of equation
3.3.4 we have Z [:-:2 [—f]] =X, (z”!). Hence above equation becomes, -

Z[reyxy 0] = X, @ X2 (27)
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which is proved. The ROC of the z-transform of correlation is intersection or overlap of
ROC of two individual sequences.

3.3.2 Multiplication of Two Sequences
This property states that if,
x;(n) === X, (2)

and x;(n) e X,(2)

then Xy (M) Xq (1) 2 y—m ﬂjlxlfv}x;,[i]p“ dv e (3.3.10)
Inj "c ¥

Here C is a closed contour. It encloses the origin and lies in the ROC which is common to

both II {P}ﬂ“‘d I: [l]
v

Proof :
Let x {n) represent the multiplication of x; (n)and x; (n) i.e.,
x(n) =x (n)-x5 (n) - (33.11)
Inverse z-transform of x; (n) is given as,
X (n) = —— b X, v av - (33.12)
nj I

This is the standard formula gives x; (n) from its z-transform. We will see more about
inverse z-transforms and this formula in the section on inverse z-transforms. Putting this
expression for x; (a) in equation 3.3.11.

x(n) = L (ﬁft{vjv"‘ dv-x5 (n)
inj I

Taking z-transform of this function,

X(2) = i x(n)z™" = i [—L ‘é.‘:.{v}lv"'l dwx;fn}]z_"

m =i - =i i“.j

Let us rearrange the above equation as,

5
X(z) = EL'IIU@; Ay (v) E w Lyl Xy (n)z™" dv

A= -

E:j o] p—
1 -] -
.E_Méx, {v}ﬂgm [.rz {n}[—] J dv
- =
In the above eguation E [rﬂ[ij is equal 10 X, (51 by definition of z-transform.
A= = ¥ L)

Hence we can wrile,
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1 2\ -1
X = e X Xa| =
Lﬂ 2!1_ é 1{\1} 1(5!}” dv

[-
which is the required resalt. Let the ROC of X (v) be,

rn <M<, . (3.3.13)
and that ﬂfxzft} e,

ry <ld<ry,

Then the ROC of X, [E] will be,
¥

z
Fap < H" Fau

Hence the ROC for X (z) will be,
rap | <|d<r, ¥ from above eguation
The range of values of |v| is specified in equation 3.3.13.

3.3.9 Conjugation of a Complex Sequence
This property states that if x (n) 15 a complex sequence and if,

x(n) o2 X (z2)
then z-transform of complex conjugate of x (n) is,

() ez X' (z) . (3.3.14)
Proof :
By definition, the z-transform of x'[n} will be,

Z :‘{n}] = i x (n)z™"

Lt ]

Let us rearrange the above equation as,

z x'{u}] = i [jin}(z')_-}.

n=—a

[ 3 m;(;)'"]'

A —0h

In the above equation the quantity in [ ] brackets is equal to x(z'} Hence,

z[x*m] =[x (z')]'
X )

This is the required proof. The ROC of z-transform of conjugate sequence is same as that
of X (z). '
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3.3.10 z-transform of Real Part of the Sequence
This property states that if x (n) is a complex valued sequence and

x(n) ==X (2)

then Re[x(m]«2e ~[x @+x" (")]  (33.15)

Proof :
Consider the RHS of equation 3.3.15 above. By definition of z-transform we can write,
%[x {z}+x'(z‘ )] = %{z[r{n]] +z[1‘{n]l]}

In the above eguation we have used the comjugation property of equation 3.3.14 to wrte
I'(z')=2[x'l:r|‘]- Since z-transform satisfies the linearity property we can write above

equation as,

1 # f w _ l "

.:.[x @+x'()] = s Z{x(n)+x 'l.'n}l} .. (3.3.16)
We know that x(n) =R¢[.t(n."l] +fImx(n)
Hence ' x" (n) = Re [:-:{n]l] —jImx(n)

Putting the values of x(n)and x"(n) in equation 3.3.16 and simplifying we get,

| o
s[x@+x7 ()] = 2{Re[x (]}
This is the required proof. The ROC of above z-transform includes ROC of X (z).

3.3.11 z-transform of Imaginary Part of the Sequence
This property states that if x (n) is a complex valued sequence and

x(n) «=> X (2)
then Im [x(n)] -L-E—lj[x @-x"(z")] . (3317)

Proof :
Consider the RHS of eguation 3.3.17 above. By defimtion of z-transform we can wnie,
1 s . 1 .
-i-}[x @-x"(z")] = i—j{z[x[n}]—.z[.r m]}
In the above equation we have used the conjugation property of equation 3.3.14 to write
I'(z’)-;z x'{:j‘fl. Since z-transform satisfies the linearity property we can write above

equation as,
1 L L - 1 L1
| E;[-’f (z)-X (z )] = :—53 x(n)-x {n}} . (3.3.18)
We know that x{n) = Re[.t En}] +j Im [x{nll

Hence x" (n) =Re[.r{n}]*—j!m[x{n]|]
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Putting the values of x (n)and x'{n} in equation 3.3.18 and simplifying we get,
1 - L) l &
—1X -X = —=2Z42jl
X @-X ()] = g2 m=m]}
= E{Im [.:l_' {n}]}
This is the required proof. The ROC of the above z-transform includes the ROC of X (z).

3.3.12 Parseval's Relation
If x; (n)and x5 (n) are complex valued sequences, then the Parseval's relation states that,

3 oxmxsm =——¢ x,{p}x;[it}“ dv . (3.3.19)
2rj ‘e

o= = v
Proof :
From equation 3.3.12, the inverse z-transform of x; (n) is given as,
1 =1
nn) s —g X;(v)v' " dv
: Inj 'ﬁ: :

Consider the LHS of Parseval's relation,

[ <] . <] | - .
E xp(n)xa(n)y = ¥ E—;—ixlmu Ydvxs(n)

f= =0 A = =0 .Ir

By putting x; (n) from above equation

| % . -
E—Mqﬁx.(u}l Z x5(n)v” "] dv

n= =

In the above equation v° =¥ -¥

Lo . - . —n -
Y. xp(n)-x3(n) =E+U_1£x,{u}[ > xl{n}[%J ]u Ydv .. (3.320)
R == H==4
] - 1 =K - 1 —H-ﬂ
In the above equation Y .:1[.-:}[—] = ¥ Iz{n}(—-]
LT ] ¥ = - L
- | T
=l X I::“ﬂ{—.]
_n-n:u ¥ )

il
S
rJd
—
t —
-
| S
| SSSm———

()
¥
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With this result we can write equation 3.3.20 as,

£ [ I_ - ] -
xjn)-xs(n) = — P X (V) X5 | = v dv

2, x(m)-xy(n) za;t 1 () z[F.]

which is same as the required relation. Thus Parseval's relation is proved.

3.3.13 Initial Value Theorem
If x (n) is causal sequence, then its initial value is given by,
x(0) = lim X (z) - (3.3.21)
Proof : L

By definition of z-transform,
X
X(2)= 2 ximz™
0= -
Since x (n) is a causal sequence, x (n) =0 for n< 0. Hence above equation becomes,
X = i x(m)z™"
ne
=x(M+xMz +x(Dz +x (N2 +...
Applying the himits as z —» a0

lim X (z) = lim x(0)+ lim x(1)z”"

+ lim A:[Eilz'3 * ...,

I —wEh I — ol Fs 1] I—wm
Thus, =x(0+0+0+0....
Initial value x(0) = lim X (z)

14
Ex.3.3.1 Delayed unit sample sequence.
Determine the z-transform of following function,
xi(n) =din-k)
x3(n) =8(n+k)
Sol. : In example 3.2.5 we have obtained the z-transform of unit sample sequence &(n). It is
given by equation 3.2.21 as,
Z[&(n)] =1 ROC : Entire z-plane.
Consider xy (n)=58 (n - k). This is the unit sample sequence of k samples right shift. The
time shifting property of z-transform is given by equation 3.3.2 as,
E[x{n —I:}] =% X (2

Applying this property to x, (n) =8 (n - k) we have,
Z[x,(n)] = Z [6(n~k)]

=z Z[8(n)] By time shifting property
=zt
: =zt
This z-transform has infinite value at z=0, since Z [x, (n)] -—-z_k=;]1—. At z=0 this

becomes infinite. It has finite values for remaining values of z. Hence ROC for Z[x, (n)] is
entire z-plane except z = (. Thus we have obtained a z-transform pair,
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S(n-k)etezk, ROC : Entire z-plane except z=0 .. (3.3.22)

Now let us consider the second sequence x; (n)=06(m+k) Again applying the time
shifting property of z-transform we have,
Z[6(n+k)] =2* Z[5(n))]
= ;1 1
- zl
This z-transform has finite values everywhere except at z=w. Hence ROC for this
z-transform is entire z-plane except z = o, Thus the z-transform pair is,

Sin+k) «ts .:& . ROC : Entire z-plane except z == .. (3.3.23)

Ex3.3.2 Determine the z-transform and ROC of the following sequence.

x{n) =[m%] u[nj-[%] ui(=n=-1) - (3.3.24)

Sol. : The z-transform of x (n) is,
X(2) =2 [x(m)]

=Z. [—%] u{n]—[%] ufi-n —]}}

Since z-transform satisfies lineanty property we can write above equation as,

X(z) =z-(—%] u{n}}+3{—{-‘2—] ul[—n—l}} .. (3.3.25)

Here let us use the standard results derived earlier. i.e.,

z{a"u(m} = . ROC:|¢>|d from equation 3.2.12
l-az
1Y 1 1
E{[—E] u[n}} =—-—-—1-—---.. RDE:|:1}§
14-z7"
3
And 3{—a" u(—n -1}} = - ROC :|f<|d from equation 3.2.19
l—-az
E{-[l] ul[-n-—-l}} = II ' RD{‘_‘:M.{l
2 I_EI_L 2

With these results we can write equation 3.3.25 as,

X(@)=—4+—1  ROC:|d> and|g<}
1 1 1 3 2
1"3‘3 I—Ez
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The ROC of |.:|:-‘*%and.|:|{ % can also be written as %ﬂdcﬂ T; Thus ROC is the region

between the circles of radius of %and % Fig. 3.3.1 shows this ROC.

Irniz)

Fig. 3.3.1 ROC of the function of example 3.3.2
Thus the ROC is the intersection or overlap of ROC of individual functions. It is annular

region for %-: 12/< % looking like a disk.

Ex.333  Determine the z-transform of folded unir step sequence ie.

x(n) =u(-n)
Sol. : In example 3.2.3 we have obtained the z-transform of unit step sequence i.e.,

Z [HI-'t]'] = o ROC : |d=1 By equation 3.2.14
=I
The time reversal property of equation 3.3.4 states that,
If x(n)+E=+X(z), ROC:r<|gd<r
then x(—n) ot o X (z"). ROC - —l-f: |z]< l

Fi i
Using this property we can write z-transform of u (-n) as,
l
Zlu(-n}| = —. ROC : |4<1
[«(-m] == 1

Thus we Have one more z-transform pair,

ui-n) ..L.I—l- ROC : |f<1 .. (3.3.26)

it
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Ex.3.34 Derermine the z-transform of the signal
xin) =na" uin)
And hence determine z-transform of the unit ramp signal nuin) [Dec - 99]
Sol. : Let x;(n) =a" uin)

From equation 3.2.12 the z-transform of a" u (n) is given as
1
Zla"uin)| =  ROC:|q>|d
[ ] l-az™!

|
l—-az

X () = — ROC :|>|d

Now the given function is,
xin) =na" uin)
i.e. x(n) snx;in) since .:,{n“.l:a'"u{n]

X(z) = z[n X (n}] . (3.3.27)
Thl: differentiation in z-domain Fn'upn:n}' of equation 3.3.5 states thal,

Zinx(n)| == —:l.-[:]
[l'il xi(n ] z i
Applying this property to equation 3.3.27 we have,
d
Xiz) = _‘:E Xylzh ROC : |:|.-'-‘r|ﬂ|

d |

-7 —

dz 1—:::“'

o ﬂz_
T
(I - a z'l)
Thus we have obtained the z-transform pair,

a:'l

na" uin) oz ,———— ROC:|g>|q .. (3.3.28)

(1—:::")'

z-transform of unit ramp sequence :
The unit ramp sequence is given as,
xin) =nuin)
X1 = l"[n wm)]
H].r putting a=1 in equation 3.3.28 we can get the z-transform of unit ramp sequence.
Hence,

nu(n) et o——., ROC:|4>1 . (3.329)
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Ex.3.35 Find out the z-transform of causal cosine sequence which'is given as,
x(n) = L‘m{mn n}u{nj

Sol. : Using Eulers identity we have, .

ef® 410

2
90" 471 90"
2
_ [ jwon | -juga
x(n) = 2[-us"’I +e ]u{n:',l

cosB =

Hence E.'m{{l}ﬂ n) -

= 1 Jwon u{n}+-]-e"'”':"" uin)
2 2
Taking z-transform of above function,
X2 =2 {%H“ﬂ"u{nh%e‘f“ﬂ"u{n}}
Using the linearity property of equation 3.3.1 we can write above equation as,
X(2) =2Z {%H"’““ u{ul} +z{% g /mon u{n}}
Here let a=¢'®™ and b=¢"/ 0, then we can write,
_1 " 1 "
X(2) =Z[a u{nj]+22[b u{n}]
From equation 3.2.12 we can write,

z a"u{.'t]] -t

l—-az™

. ROC:|d>|d

1

We have a = ¢l ™ = cas wg + j sin @y

|a = Jcﬂri wp +5in’ @y =1
Hence we can write equation 3.3.3] as,
1

Z ﬂﬂ'u[_:t}] = W, ROC : |4=1
Similarly the z-transform of second term in equation 3.3.30 can be written as,
z["u(m] = —— , ROC : |4>|b] from equation 3.2.12 ...
l=-bz
We have b =e /™0 = COS Wy — j 5in wy

| = -,I[msz wg +3in* @y =1
Hence we can write equation 3.3.33 as,
1
Z1b"uin)| =
[o"uem] =

— ROC: 1
— =100 4= ’ 4>

- (3.3.30)

- (3.3.31)

- (3.3.32)

(3.3.33)

e (3.3.34)
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Putting the individual z-transform values from above equation and eguation 3.3.32 in
equation 3.3.30 we get,
1 |

| l
Xz g +—=
« 21—l 2 S0

, ROC : |g4>1

r
] | |
ol - T ;
ELl—r'""“z'] - e~f®0 g~
1—e /90 ;71 4 g/ -l
1-1!""'“'“ z_l - & 90 E_I + ol 20 z-l &1 20 I_l
I 2-:"(:”'3' +e"'“'“)

Here let us use Euler's identity i.e. 2cosB=e'" +¢7/% Hence above equation can be
further simplified as,

Hll—

1 2-2:7" cos

@)= -1 =0 -2
211-277" cosmg +2

-1

X(@) = — =290 ROC:|4>1

1-227" cosmg +2°
Thus we obtained the standard z-transform pair as,
-1
m{mu, H}ul{ﬂ} i, 172 coswy = ROC : |4>1 ... (3.3.35)

1-2z7" cos wg +12
Ex3.3.6 Determine the z-transform of

x{n) = 5in I_:mﬂ n)u{n}
Sol. : Using Euler's identity we have
P _ 18
2j

.si'u{muu) = Ii_;[ef wpn _ i wg n]

sinf =

x(n) =~;}[H”u" —E'Jm“"]utn}

1 1 -

= — &0 y(n)-— e 0" yin)
2j 2j

Taking z-transform of above function,

X(2) =2 {l,a.-f'“'““ u(n) - —
2j

1'1,:' e "m}

- Eljz{ef“ﬂ“ u{n}}—llj 3{,,—1 “0% u(n)} By linearity property .. (3.3.36)
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In the previous example we have obtained z-ransform of &/ 0" u (n), ie.,
z{ Jugn u[n:]} e T ROC : |4>1 By equation 3.3.32

Similarly z-transform of ™ “®" 4 (n) also we have obtained in previous example. ie.,

A {t—imun ““ﬂ} - 1——j]mu-—T ROC : |4>1 By equation 3.3.34
-e z

Putting the above two results in equation 3.3.36 we gel,

X (2) -1 : L. l . ROC :|g4>1

2j 1-ef®0 7t 2 o giw0 oo

S S B }

2j []-ef“’“ L b

1 1-¢7/90 g1 14 /90 ;!
E_.F"l]-e_*"""ﬂz'l' — el 0 g1y gmi®0 - l-c*f”‘“z"}
| = (ejmu __t-i“n)
2j | 1-z7! ({J"’” +|r_Jr'”3"'-")~|-,:_1

-
-

[ oy e 0 _mfmo
L —Ej_-
1-z (e-"“’“ —e"“"“)ﬂ’l

l

Applying the Euler's identity to above equation we can wrile,

271 sin wq

X(z) = I . ROC :|4>1
1= " costwy +2z
Thus we have obtained the z-transform pair as,
-1 =
sin (mﬂ n] wim) -t z  Sinwy < ROC : |7>1 .. (3337)

=21 COS Wy + 2

Ex.3.3.7 Determine the z-transform of the discrete time signal,

x(n) =a" fﬂj[mﬁ n]:.r{n} [Dec - 98]
Sol. : Let x;(n) = cos {mﬂ n}u{uj
The z-transform of cos (wy n)u(n) is given by equation 3.3.35 ie,
1=z cos [y
X, (z) = T ROC : |4=1 .. (3.3.38)

=271 cos Wy +2

How v, nsider the given equation i.e.,



Digital Signal Processing 175 The z-Transform

x(n) = a" cos (g n)un)
=a" xy(n)
X(z) =2 {n" X {.-t]I}
Here let us use the scaling property of equation 3.3.3 ie.,
z{a" x(nj} = x[ﬂ ROC : |dr <|d<|dry

Applying this property to equation 3.3.39 we have,

x{ﬂ' =Il[£a]

X, [E] is obtained by replacing z by = in X (2) of equation 3.3.38 ie.,
a a

-1
1—(-—] COS g
X (2) = - . ROC :|d>1-|d

)=l

Thus we obtained the z-transform pair as,

-1
I-[EJ cos Gy
a" cos (wg n)u(n) .. = , ROC:|d>|d

_ -1 -2
a a

Ex.338 Determine the z-transform of the following signal,
x(n) =a" .ﬂn{mn. n)u {n)
Sol. : Let x;(n) =.i=|'n(mn n:ln'{n}
The z-transform of sin (wy n)u(n) is given by equation 3.3.37 ie.,
X, (2) = lsineg _ poc 4>1

1-2z7" cos wy +770

Now consider the given equation i.e.,
x(n) =a" .ﬂn{mn rl}u (n)

=a" x;(n)
X(2) =2 {a" x, {n}}
Here let us use the scaling property of equation 3.3.3 ie.,
z {a" .r{n:]} = X [E] ROC : |dr <|d<|dr

Applying this pmp-:rfr to equation 3.3.42 we have,

- (3.3.39)

.- (3.3.40)

. (3.3.41)

. (3.342)
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X (2) =x,E]

Here X, [5] is obtained by replacing z by finx ; (z) of equation 3.3.41 ie.,
a a

=1
[EJ 5in wy
X(2) = =

-1 -2
1-2[5] COSF iy +[E]
ia 4

Thus we have obtained the z-transform pair as,

The z-Transform

. ROC : |4>1/|d

=1
= £in 'l:l:lu
a" sin(wg n)u(n) L. [ﬁ]

-1 -2
1—1[5] cOS iy +[£]
a a
Ex.339 Determine the z-transform of the following signal with the help of linearity and
shifting properties.
x(n) = | for0snsaN-1
0  elsewhere

Sol. : The given function x (n) is a pulse having " A" samples of amplitude 1. This pulse can
be obtained from two unit step sequences as follows :

x(n) =uin)-uin-N)
X(2) = Z fu(n)—uin-N)}
By linearity property we can write above equation as,

X (z) = Z[u(n)] = Z[u(n-N)]

, ROC:|g>|d .. (3.343)

Taking z-transform,

o (3.3.44)
The z-transform of unit step sequence is given by equation 3.2.14 as,
z[u{n}] = - ROC : |4=>1 . (3.3.45)
l=-2

The time shifting property of z-transform states that,
x(n-k)eZaz ¥ X(2)
Zun-N) =27 Z[u(n)]

- 1
=_z'l'l-

l—z_l

Putting results of above equation and equation 3.3.45 in equation 3.3.44 we obtain,

X(2) = Idl_z
1=z
1-2~N

- . ROC:|g=1
1-z~!

e
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b - T g 1= M [ |
Ex3.3.10 Determine the z-transform and the ROC of the signal, -

n "
x(n) =[3'(4 )-4(2 )] H{ﬂ} [HI}"H? n‘n.gi]
Sol. : To find z-transform of given signal Iet us use I.he slanda:d refation given in table 3.3.2,
LE.,
a"uin) «=u .1 '. RﬂC:!zl}ld
- . v l=ag AT
4" u(n) 2 p—— , ROC:|z|>4
o 1odg) :
and 2" u(n) - 1 . ROC : |z]»2
1-277"

Therefore z-transform of given signal becomes, °
X (2) -32{{4) u(m} - 43{[2} u{n]}
4
= - . ROC:|z|>4
1—_4;_ -2z
The common ROC for |z|>4 and |z|> 2 is equal to |z|> 4

Ex.3.3.11 Determine the z-transform including ROC for the following.

(i [1] w(-n) (i) [-'-J {u (m) —u (n -10)} |
2 2 [May-2000]
Sol. : (i) The given function is, )

1 4]
xin) =[EJ Hi{=n)

In example 3.4.10 we have obtained the z-transform of a" u(—n). It is given by equation
3.4.50 as,

1
z{" )} =——— , ROC:|z|<|d
l=a "z

Here in the given example, a= % i.e.,

e} oo

* This 15 the required z-transform of given function.
(ii) The given function is,

xin) = [%J {u (n)—uin —ll]}}



Digital Signal Processing 178 0 The z-Transform
t[%] u{ﬂ]-[%] win=10)
X(2) =2 {[%]ﬂu{n]} —E{[%]Hu{n —ma} . (3.346)

From Table 3.3.2 we can write z-transform uf[—ll-] u[u.‘i as,

]
(1] wmy+Ees— 1 RoC:|z|>L .. (3.347)
’ (3 :
2

bad | —

Mow let us consider z-transform -uf[ J-u(n =10

[%] u(n~-10) can be written as,

"

n 1
[%Ju{n_m}: E] for nz10

0 for n<10

#{(§f oo} - £

-5 G

Here we use the standard relation given by equation 3.2.24. i.e.,

2[(£)wca-o) (=)

- (3.3.48)

Bet,
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This is the required z-transform.
Ex.3.3.12 Determine the z-transform of

"

xin) =4 for m2z0
n!

Sol. : By definition of z-transform we have,
X(z) = 2 x(mz™"

LR

0
=2
n=10

.‘:lh

A=

n
! s

—M

n!

Here we will use the standard exponential senes,

n
" X

£ = —_—

iy} f!

.. Equation 3.3.49 becomes,

X(z) = e

This is the required z-transform.

« (3.3.49)

- (3.3.50)

Table 3.3.1 : Properties of z-transform

Sr.| Name of the Time domain z-domain Region of convergence
No. property sequence representation
x(n) X(2) n<ld<ry -
x, (n) X, (2) ROCI
X3 (n) X5 (z) ROC2
| | Linearity ay xy(n)+a; xa(n)| ap X, (z)+a; X,(z) Intersection of ROC]

and ROC2

"2 | Time shifting | x(n-k) T 403 ROC of X (z) except
z=0if k>0and z=w0
if k<

3 | Scaling in a" x(n) E ldr <|d<|dr
Z-domain a
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Sr.| Name of the Time domain z-domain Region of convergence
No. property sequeénce representation
4 | Time reversal x(-n) X (:‘]) L{ 1< 1
2 d!
5 | Differentiation in| n x(n) _d'_ Same as ROC of X (z)
z-domain —zdsz (2)
6 | Convolution in | x, (n)*x5 (n) Xi(z)-X5(2) Intersection of ROC 1
time domain and ROC 2
7 | Correlation NUETISE X (2) X, (z']) Intersection of ROC of
X, (z) and X, (z7')
8 | Multiplication | x; (n)-x3 (n) Ltf, Xy (v) ryy I¥<|d<ry, [v| and
Inj e ni<v<n,
X4 [E}Fl dv
0
9 | Conjugation x (n) x" (;') Same as ROC of X (z)
10 | Real pan of Re [.r (nj] l[x B+x" (I.. )] Includes ROC of X (z)
xim) :
11 | Imaginary part | Im[x(n) 1 vt .t Includes ROC of X (z)
of x(n) [ ] [I (@) -X ('3 )]
12 | Initial value Causal x (n) x(0)= lim X (z)
theorem 4w
|3' FB.I'SE'FEI.'B- = # I I_ # =1
relation --E_WI]{H}#I {H}=z_ﬂ'j t IL{P]HI ]1-" dy
Table 3.3.2 : Standard z-transfer pairs
Sr.No. | Time domain sequence x (n) z-transform X (1) ROC
1 b (n) | 1 Complete z-plane
2 uin) 1 | >1
| —z"!
3 a uin) I |2]>|d]
|- Ez_l
4 —a" u(-n-1) ! ld<|d
1-az"!
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Sr.No. | Time domain sequence x (n) z-transform X (z) ROC
5 na® u(n) ( 132 ld>|d
l-az )
-1
az
6 -na" u({-n=-1) ( 132 ld<|d
l-az” )
-z~
7 cos (wy n)u(n) - _c03 &y = lz]>1
-2:71 cos g + 2
-1 .
. I SIR by
8 sin(wy n)uin) =
( ) 1-2z7" cos g +272 & ]
[z] COS iy
Q a" cos (mﬂ n]u{n] “ - ld=|d
-of3) wree(2]
[ ] sin
10 a” .ﬂ:ﬂ{{ﬂﬂ rl}ufrl] 3 |z|>|d
-5 ] it
a" for 0snsN-1 50
11 0 otherwise 1-.:;;" lz
20Aglri cos(Ben+ay)um)| Ay A
12 Ay =|4,] e/ ®* and I-py I-pyz lz|>| el =n
Pr =" e/ Pt
3.4 Inverse z-transform

In the last two sections we studied z-transform and its properties. Always it is required to
transfer the signal to z-domain and get it back in time domain. The signal can be converted

from z-domain to

(i) Contour integration
(ii) Partial fraction expansion

(iii)

Power series expansion

time domain with the help of inverse z-transform. The inverse z-transform
can be obtained by the following methods.

Inverse z-transform can be obtained by the contour integration and this i1s the basic
method. Without going into much mathematical theory, we can state the inversion formula
based on contour integration as,
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-l by
xm) = $X @ de . 3A1)

This formula is based on cauchy residue theorem. Almost all the z-transforms we use in
practice are rational. A partial fraction expansion is the more simpler way to find inverse
z-transform. Next subsection discusses this technique.

3.4.1 Inverse z-transform Using Partial Fraction Expansion

In this method, the function X (z) is expressed as,
X(z) =0, X,(2)+a, Xa(z)+..+a, X, (2) - (34.2)
Here o), 04,0 5,...,0; are the constants and X, (z), X5 (2),..., X, (z) are the standard
z-transforms where inverse z-transforms are known. For example, their inverse z-transforms are
xy{n)yx5 (n)...., x; (n) respectively ie.,

xp(nleta X (z) xg(n)ets Xylzho xy(n) ets X (2)
Then by linearity property of z-transform we can obtain the sequence x (n) as,
xin) =a xy(n)+asxy(n)+.. +a, x;(n) - (3.4.3)
This method is possible for the z-transforms which are rational in nature and can be
expressed as the ratio of two polynomials i.e.,
X(2) = Ni(z) _bg +b T v by
D) ap+ayz +...+ayz™

Here ag =L If ay #1, then the polynomials are adjusted accordingly. In the above equation
ay # 0 and M< N, then it is called proper form. Otherwise the function X (z) is arranged such
that it becomes proper. With ay =1, above equation can be written as,

N{(z) - I'J‘u ‘I'I'Jl 2_1 g gl +-hj,|' E_H

M

- (34.4)

Xi(z) = - (3.4.5)

D) d+qz ' +vay

Multiplying both the numerator and denominator by ¥ in above equation we get,
-ﬁ“ IH +b! IH_]' -i-....-l‘-li.?H EH_H

" +dy My ray

Xi(z) =

Let us write the above equation as,
X(z) - by -EN_I + by Eﬁ_z +ot by .EH
: Mg
The denominator polynomial can be wnitten in the factor form as,
N N- _
2 +ayz wentay =(z-p)(z-p2)(2-PN)
Hence equation 3.4.6 can be written as,
X(z) _boz" ' +by2" "+ 4byz
: (z-pi)(z-P2)-(z-Pw)
The above equation can be written in partial fraction expansion form as follows,
Xiz) _ A Ay Ay
= + ot
. z I-p1 1-=pP3 I=Pw
Here the coefficient A, can be obtained as,

— -]

. (3.4.6)

vt dy

2 N-M-1

s (34.T)
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(z-pi )X (@)

1: o= Fl L]
This formula works only when p, = p, # py #....# py, i.e. they have distinct values.
Equation 3.4.7 can be further expressed as,

A, = k=L2..N .. (34.8)

Itz}n H]I+.Iq-22+"“+ ANI
I=p iI=pP2 L= Pw
=AM -+ A2 — -+t An 1 .. (3.4.9)
I-py2 1-ppz I-py 2

Here we use two standard z-transform pairs,

a" u(n) «=» l » ROC:|d>|d
l-—az”

and —-a" u(-n-1) e-ton L = ROC : |d<|d
l-az”

Depending upon the specified ROC, the sequence x(m) can be obtained from equation
3.4.9 by applying above two standard relations. Thus for equation 3.4.9 we can write,

(pe) win) if ROC:|4=>|p
IET{-—-—mL-:l-} - ) causal sequences . (34.10)
1-ps 2 =(pi)" ul=n=1) if ROC :|zf<|p]
anficausal sequences

Here 'IZT' means inverse z- tmnsfunn of the quantity in brackets. The following example
illustrates this procedure.

Ex34.1 Determine the inverse z-transform of the following function

X(z) = - -
1-15z7" + 052

For following ROC

(i) ROC : |2>1

(ii) ROC : |4< 05

(iii) ROC : 05<|g<1

Sol. : Here N(z)=1 M=0
and D(z) =1-15z"" +05z% .. N=2a;=land ay =05

Hence M< N, ay #0and ay =L This shows that the given function is in proper form.
'I'her:mm we can proceed with the mt step. That is to multiply numerator and denominator

by " . Here we have to multiply by z%. Hence the given equation becomes,
2

|

X(@ =x
2 1-15z7' + 0577
S ST )

= 5 _ - (3.4.11)

2" -15z2+05
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there is one zero at z=-1
Thus both the poles p; and p, of this system are inside the unit circle |z| =1 The system
is stable if poles of H(z) are inside the unit circle. Hence this system is stable.

The input to the system is,
xin) snuin)
The z-transform of nu(n) is given by equation 3.3.29 as,

=1
X(z)=Z2 {nul{n}} =
(‘-= )
Let us rearrange X (z) such that powers of z will be positive i.e.,
L

(z-1)°
The z-transform of output ¥ (z) is given as, \\
Y(z) = H(z)-X (z) ~
_ z+l oz
(2-00) (:-03) (1)’
The above equation can be written as,
Yiz) _ z+1

Z (z-04) (z-03) (2—1}1
In above equation there is {z-lj1 term in the denominator. Such equation can be
expanded in partial fraction as,
¥iz) = ﬂ| + r’l; +ﬂ_3+ A,‘
z z-04 2z-03 :z-1 {z-l}z

X(z) =

. (3.6.8)

-~ (3.6.9)

Here A;,A,, A can be obtained using equation 3.4.8 as follows :

¥(z) z+1 |
Ay =(z-04 =
O e T o) (e s

) 04 +1
(04-03) .[u.-:-x],1

= 3880

el |

Az '{I ﬂJ) z=ﬂ.3 [z—lld] {z—l}1 =3
_ 03 +1 . = — 7653
(03-04) (03-1)
2 ¥(2) z2+]
Ay =(z-1)"- z lesl =.[:.;—114] {z—['-'i}Iz-l
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1+1
= =47
(-0 (1-03)

A5 can be obtained by equation 3.4.32 ie.,

d 1 Y fEJ |
Ay =—|(z-1)% . —=
3 &z |:{E ) N j|r]

e

el

(z-04)(z-03)1-(z+1)(2z —ll?}i
(:1 -m:m.u)i

=1

n

-1235
Thus equation 3.6.9 becomes, _
Y(z) _ 3889 2653 1235 476

= -

+
z z-04 z-03 z-1 (1_1)2
| 3889 265% 1235 476

Yiz) = - +
z-04 z-03 z-1 [3_1}3
3889 2653 1253 476z
Y@z = = e 2
=047 =037 1= (1)

The inverse z-transform of this equation can be obtained from Table 3.3.2 as,
y(n)=3889(04)" win)=2653(03)" w(n)=1253(1)" uin)+476-n(1)" uin)
This equation can be simplified as,

}'[n}=[353'§||{l].4}” ~2653(03)" 1253 + 476 n] win)

This is the required output equation.

Ex3.64 For the following system obtain the system function H(z) and plot its poles and
zeros against unit circle.
¥(n) s=ay(n=1)+x(n) [May-98]
Sol. : Taking z-transform of the given difference equation, :
¥(z) =az”' Y(2)+X(2)

(1-az) ¥(2) =x@

¥iz) _ 1
X(z) 1-az?!
Since H{z) = Fiz)
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This is the system function. Converting powers of z positive in above equation,
H(z) = —— = 22
I-a I=m
This system has one zero at z; =0 and one pole al p; =a The pole zero diagram is shown
Fig. 3.6.3.

Imi{z)
E
Z-plape
& " >
=1 0 a |1 Re(z)
-

Fig. 3.6.3 Pole zero plot of the function of example 3.6.4
Ex.36.5 For the jollowing sysiems
(i) vin)=05y(n=1)+x(n)+x(n=1)
(ii) yin)=x{n)+3x(n-D+3x{n-2)+x(n-13)
Plor the pole-zero diagram and assuming y(n)=0 for n< () find values of y(n) for

n=>012 3 4, 5 for x(n)=8(n) [Dec-99]
Sol. : (i) The given difference equation is,

¥i(n) = %}-{n—-l]+1{n}+x{ﬂ—lj

Taking z-transform of above equation,
Y@ =22 Y@+ X @+ X @

(l+z“').‘!’ (z)

‘,_.—.—._.H
—
|

b | —
*a
L3

LR
=
Py
4

-
i

Yiz) _ 1427
X2 _ ]2_3—1
We know that Y = H(z) Le.,
z
Fiz)  l+z7!
2} = - . (3.6.10
(z) X (2) L 5 ( )
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_z+l _z-g

Il z-p
zu_
2

Thus H (z) has one zero at z; =-1 and one pole at p, =%.

Fig. 3.6.4 shows the pole zero diagram.

Imiz)

L

I

-

=
Pl ¥

=1

Re{z)

Fig. 3.6.4 Pole zero diagram of system of example 3.6.5
From equation 3.6.10 we have,

-1
o) =22 x( . (36.11)
|
l=—z
2
We know that input x (n)=5(n)
Hence X(z) =Z{8(n)}=1
Putting this value of X (z) in equation 3.6.11 we get,
-1
Y(2) = l+z _ z+1
I—l-':'l I—L
2 2
Y (z) z+1 =ﬂ+ A,y
z 1 z 1
— z__
z[z IJ :
ﬂl —Z'!:E = z+1 ==23
I |z=l z_!
A|z=0
!
and ‘!2 =[z-l 'ru},.l .E+|.£:.:_ =1
) 2 z |2
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i hk) E_M:I ﬂjm‘

k®s =

= H(w) ™" . (5.2.2%)

Here, Hiw) = i hik)e /™ .. (5.2.24)
ks =

Thus H (w) is the fourer transform of A (k). And A (k) is the unit sample response. M (w)
is called Transfer function of the system. H{w) is complex valued function of @ in the range
-t S @S i The transfer function H (w) can be expressed in polar form as,

H(w) = |H (w)] /<51 .. {5.225)

Here |H (w)| is magnitude of H (w)

and £ H (m) is angle of H (w).

By euler's identity we can write ¢ = cos 0 + j sin 8. Hence equation 5.2.24 can be written
as,

H(w) = 3 h(k) [cos (k) - j sin (k)]

_*:l—ltl:l

= ¥ hcosb—j Y hkysink) .. (5226)

P L
Here Hp(w) = real part of H(w)= Y h(k)cos (wk) . (5227)
k==m
and  H; (w) = Imaginary part of H(w)=— % h(k)sin(wk) o (5.2.28)
k= =0
and |H (@) = VHE (@) + H} (o) . (5.229)
and Z H(w) = an- 219 .. (5.2.30)
Hp (w)
Ex.5.2.6 The difference equation for the low pass filter is given as,
y(ny = =) *;‘:” -
Cbrain the magnitude/phase rransfer function plots for this filrer.
Sol. : The given difference equation is,
yi{n) =%x{n}+%x(n—lj .. (5.2.31)

The linear convolution of unit sample response h(n) and input x(n) gives output y(n).
1.e.,

yimy = ¥ hik)xin-k)

k=—m
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{0
2
Phase of H{wm) = iH[n}j:mn‘J M
Hy ()
. ®
=50 — 05 —
= tan ! 2 2
-I;'I:'.l‘.'-'1 E
L 2
-1 m]
= lan = fan —
\ 2
—_—
2

. (5233

.. (3.2.34)

Table 5.2.3 shows the calculations of magnitude and phase of H(w) for few values of @
Table 5.2.3 Calculation of |H ()| and £ H (w)

Magnitude | phase 2 H (0)=-2

% |H(m}|=cus§ 2
T
- 0 E
in T
p 0.3 3
_F 1 n
2 J2 4
_= V3 n
i vy 6
0 | 0
R NE) om
3 ) 6
X 1 X
2 J2 4
2x 0.5 .
3 . 3
b
f ] —E

Fig. 5.2.1 (a)} shows the magnitude and Fig. 5.2.1 (b) shows the phase plot of transfer

function based on calculations in above table.
Please refer Fig. 5.2.1 on next page.
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In the z-plane, z=r ¢/™ represents a phasor. It has magnitude r =|2 from origin and angle
"o with respect to Re[z] axis. This is illustrated in Fig. 5.2.2,

As shown in Fig. 5.2.2, the angle ' is basically frequency '« in fourier transform. Thus

the unit circle becomes frequency axis. The frequency w=0 i.e. DC is along the positive Re[z]

axis, The frequency nfm:% is along the positive fm [z] axis. And the frequency w=n is along

the negative Re[z] axis. Observe that the point @=0 and w=2xr 18 same on unit circle
Similarly the point o= nmand w=-x is same i.e. {—Lﬂ} on the unit circle. We have seen that
maximum discrete time frequency that can be represented is = Hence upper part of the unit
circle represents actually used frequency scale. This z-domain frequency scale will be useful in
the design of filters.

Ex.5.2.T The difference equation of the system is given as,
y(n) = %x{n}+%x(ﬂ—l} .. (5.2.43)

Find out (i) System function (ii) Unit sample response (iii) Pole zero plot
{iv) Transfer function and irs magnitude phase plot
{v) Magnirude/phase response using geometric interpretation.
Sol. : (i) To find system function :
Taking z-transform of given difference equation,

Z{ym} =2 {%:[nﬂ-%x{n—l]}

Applying the linearity and time shift properties,

1 -
Yiz) ==X (2)+=2" Xl(z)
(2) 5 () 3
1 1 -
- [TE‘ ’]xrz}
Pz} _1.1.4
X (z) 2 2
H ; _Yi)
ence system function H(z) = becomes,
X (z)
1 1
H{z) ==+4-z e (3.2.44)
2 12

(ii) To find unit sample response :
A unit sample response k (n) is obtained by taking inverse z-transform of H(z). i.e.,

1 1
h = ZT {H(z)} =T =+ —
(n) { 'I'_',I'} {j EE }

Applying the linearity and time shifting properties and from z-transform pair 6 (n) ¢ 1, we
can write,

hin) = %E{n} +%5{ﬂ —-1) w (5.2.45)
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(iii) To determine pole zero plot :

Consider the system function H (z),

|
H ==t =7 e 13,2406
{z) : 1—1 { )

Let us convert the powers of 'z' to positive by rearranging the equation as follows ;

1 z+1
H{z] -
2

=
LS

Hence zero s at z=-11.e. ~1 + j0
and pole is at z =0 i.e. origin
Fig. 5.2.3 shows the pole-zero plot.

Irri{z)
b

Ulniil gircle
-1
4
u /1 Hﬂ:]

L=plang

Fig. 5.2.3 Pole-zero plot of the system function of equation 5.2.46
{iv) To obtain transfer function H (w) and its magnitude/phase plot :

The transfer function H {w) can be obtained from system function H (z) by putting z=¢'®,
Hence equation 5.2.46 becomes,

) 1 1 _;
H{w) = H{zl;ned® =—+—=¢ ™
) fam el 5*3

= %(; 2o w) . (5.247)
1

= E-e'*'“”z (e*’“’” + r'f"”'z)E}r rearranging the equation

iw -j8
By euler's identity we know that % = cos 0. Hence above equation can be written as,

H () = cm[g]-e‘f“” .. (5.2.48)

This is the required transfer function. This transfer function can be expressed in phasor
form as,

H(w) = |H (w)] /<% .. (5.2.49)
On comparing above equation with equation 5.2.48 we gel,
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Magnitude of H (w) = [,H'{ﬂ.‘:]l| = r:ﬂ.i[ J . (5.2.50)

Phase of H(m) = £ H{w)= —g . (5.251)

'w is the continuous function and varies from -x to = Table 5.2.4 shows the valves of
|H (w)and £ H (@) for few values of a

Table 5.2.4 : Calculation of magnitude and phase response

i 5]
= - £ Him)=-—
@ IH [m)l Cos [ 2 ] 2
0 x
—‘n 2
_3n 0.383 3n
4 ]
_E 0.707 i
2 4
_m 0.924 L
4 B
0 1 0
2 0.924 -2
4 ' £
] e}
= - £ H ) ===
© I.H{mﬂ m.r[ 1] () 2
T it
E 0.707 E
3n n
3 0.383 3
0 _5
" 2

Fig. 5.2.4 shows the magnitude and phase response of the transfer function. (See Fig. on
next page)

Note : We know that the range of w is, —n<w < = Hence useful range in above magnitude
and phase plot is from —= to = Reader can just try out by plotting |H {n:-:-)| and £ H (w) outside
this range. If we plot |H{m1 and £ H{w) from = to 3 the similar response repeats.

Here observe that the magnitude/phase plot given in Fig. 5.2.4 is same as that of
Fig. 5.2.1, since difference equation of this example is same as that of Ex. 5.2.6.
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|Hi{e )
1
(a)
—i = L] T =m
£ Him)
3
(b)
—t® -1 (i} R [
- X
2

Fig. 5.2.4 Plots of magnitude and phase of transfer function
(a) : Plot of magnitude transfer function |H (w) versus o
(b) : Plot of phase of the transfer function ~ H () versus o

Ex.5.2.8 A discrete time causal system has a transfer function H () as,
1-z7"
1-02z7' 015277
(i) Determine the difference equation of the system
(ii) Show pole-zero diagram and hence find magnitude ar w=0and w=1n
(iti) Find impulse response of the system.

Sol. : (i) We know that H (z)= i E . Hence we have,

_ Y _ 1-2
X(z) 1-02z7' 015772

H(z) =

C Itiplyi '
B o]

L FD-027' Y -5t ¥ =X (-2 X (2)

Taking inverse z-transform of above equation,
y(r)=-02y(n-1})-015y(n-2)=x(n)-x(n-1)
: yin) =02y(n-1)+0U5y(n-2)+x(n)—x(n-1)

[Dec-99]
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signal processor is impossible. Hence it is necessary to compute X (@) only at discrete values
of ", When Fourier transform is calculated at only discrete points, it is called Discrete Fourier
Transform (DFT). The DFT is denoted by X (k) and it is given as,

N=1

X(k) =3 x(n)e PN popr2. . N-1 (532
n=0
Here X (k) is the DFT and it is computed at k=01 2...N -1 i.e. 'N' discrete points.
Thus DFT X (k) is the sequence of 'N' samples. The sequence x (n) can be obtained back from
X (k) by taking Inverse Discrete Fourier Transform, i.e. IDFT. It is given as,

N-1
x(n) =3].r' Y X(k)e! TN o012 N-1  ..(533)
k=i
Here x(n) is the sequence of 'N' samples. Thus X (k)and x (n) both contains 'N' number
of samples.

Let us define, Wy = e J2nN .. (5.3.4)
This is called twiddle factor. Hence DFT and IDFT equation can be written as,

N =1

X(k) = Y x(mWi,  k=0L...N-I .. (5.3.5)

a=0

1 Na! —kn
and x(n) == ¥ XRWE™ . a=0L...N-1 - (5.3.6)

k=0

The above DFT and IDFT equation are obtained by putting /™" = Wy in equation
5.3.2 and equation 5.3.3. Let us represent sequence x (n) as vector xy of N samples. i.e.,

n=0| x(0)
n=1| x(l)
Xy = : : o (3.3.7)
r|=Nl—]_x|[h;—lj_Nx|
and X (k) can be represented as a vector Xy of 'N' samples. 1.¢.,
k=0 X(0)
k=11 X(1)
Xy = : : . (5.3.8)
k=H-|_xl:N-*|1_H“
The values of Wy can be represented as a matrix [H"',,,.] of size N = N as follows :
n=0 n=1 n=2 n=N-1
k=olw? wi  ow? .. owd ]
k=1{Wy W, wi .. Wit
(W] = 0 ¥ 2(8-1)
=2I1Wy Wy Wy o Wy
— 1 N-1 2{N=1) N=1}N=1
k=N-1wy wyowy oW

.. (539)
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Here the individual elements are written as Wy" with 'k’ rows and 'n' columns. Then
N-point DFT of equation 5.3.5 can be represented as,

Xy =[Wy] xn .. (5.3.10)
Similarly IDFT of equation 5.3.6 can be expressed in matrix form as,
xn = [Wi]%n . (5.3.11)
Here W{" =[Wy], hence Wy |=Wy*" as written above.
Periodicity property of Wy, :
Now let us see the valves of Wy, for V¥ =8 we know that Wy is given as,
in
_j_
Wy =e¢ N
With N =8 above equation becomes,
I i
_J_ _f -
Wy =e 8 =g ¢ - (53.12)

Table 5.3.1 shows values of Wy, Wy, WF, ... wi°
Table 5.3.1 Values of W, for N=8

_E:.:h
Jll

kn Wi =¢ Comments
0 Wy = e’ Phasor of magnitude 1 and
angle 0
- Phasor of magnitude 1 and
= 4 =g 4
I | W =e =€ angle —E

Magnitude 1, Angle —g

-j=x3 -JiH Magnitude 1, Angle -j—ﬂ
n Magnitude 1, Angle —n

g W 4 . ﬂEnI i E

$lwgpae 4 e

s LTI L Magnitude 1 .lﬂmgll:-j—m
“'r! =g =g 4 ' 4
g —Iiox6 e Magnitude 1, Angle _ii'n_
Wo=e & =e 2 | 2
_th:'ir —,.IT—E I

Magnitude 1, Angle ~3

Magnitude 1, angle -2x
Angle of =27 15 same as 0
. i 0

s “'ra_ Eﬂ'ra




Jigital Signal Processing 292 ' DFT, FFT and their Applications

kn whe _, "4 _ Comments

. it %0 -J'|r1==* EJ Magnitnde 1, angle - 2n+ Xl
g “‘rﬁ_ = 4 =g N 4

' » ﬂ
This angle is same as — n

oWy =Wy
mn s kg - ™
=j=xl10 1[3“—] Magnitude 1, angle -{ 2m+—
10 |w'=e"% =¢ 4 aEn gl 2
This angle is same as—g
%1:1:%3
Similarly following values can be verified
LT b In
—j==ll —_,1[1:1:1- —] 11 = K}
1 W'l=e 4 =g o Wa' =W
S -T1 - I Wil — et
12 gl o a7 _ (3 m) g =Wy
TR PO

For all further values the above
logic is applicable

In the above table observe the value of W . ie.,

= Magnitude ¢~/ Anele
Thus magnitude = | and angle = —E. In the above table all phasors 'I-'I-“i,;"1 have magnitude

'1'. Fig. 5.3.1 shows these phasors in complex plane against unit circle,
Please refer Fig. 5.3.1 on next page.
The values of these phasors are also shown in above figure observe that,
T B S
We =W, =....=cog E - | 5in E
=1 ;L
2 '\a

Similarly other values are obiained.
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The values given above can be verified easily. For example consider W; .

I-'F'f = e*ﬁT’” = e_jj?“
This has magnitude ‘1" and angle —%ﬂ and,
Wf = !"j]?: = Eﬂ:ﬂ—“—jsiﬂh=j
2 2

We have the matrix [W,; ] of 4x 4 size. Its individual elements will be as shown below :
n=0 n=l n=2 n=3

0(w? wd wd w]

Liwd owl owdoow)

2w owioowd owf

3 wdowsowdowg
In the above matrix individual elements are Wi"“ with k=01t 3 rows and n=01to 3

columns. From Fig. 5.3.2, the values of various elements in above matrix are,

[We] =

k
k
k
k

1 1 1 1
1 - -1 j
Wl =, 5 1 5
1 j -1 -
Also we have
[0
|
X, = 2
3
From equation 5.3.10 we can obtain 4 point DFT as
Xy =[Wy]xn
With N =4, Xy =[wy]xy
Putting values of W, and x,
1 1 1 1 0
X, =g
1 -1 1 -1 2
1 j -1 -j]| |3
[0+1+2+3 6
0= =243j| |2+
lo-1+2-3| | -2
0+j=-2-3j -2-2j
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Thus we obtained 4 point DFT as,

X(0)=6
| X(D=-2+2j
Yo lxim=-2
X(3)==2=-12j

This is the required DFT.
Ex. 53.2 Calculate 8-point DFT of the following signal

x(n) = {LLL1}
Assume imaginary part is zero. Also calculate magninede and phase of X (k)

[May-98]
Sol. : The given sequence is of length '4'. Since B-point DFT is asked, we should make length
of the sequence to be "8'. This is done by appending four zeros at the end of x (n). i.e.,

x(m) = {LL110,000}
Thus appending zeros at the end of sequence does not change its meaning. This is also
called as zero padding.

DFT is given by equation 5.3.5 as,

X (k) = ’f (MW, k=01..N-1

m=1

For 8 point DFT, above equation becomes,
X (k) = i x(mMW™ . k=01..7

a=0
This equation is formulated in the matrix form by eguation 5.3.10 as,
Xy =[Wy]xn
with N =E.. IE = [“‘rﬂ] .-I-'E
These matrices can be expanded as,
(X (0)] x(m] [1]
Xl x (1) 1
X(2) x(2) 1
X = X(3) and xg = x(3) _ 1
X(4) x(4) 0
X (3) x(5) 0
X (6) x(6) 0
X (T x(T)] |0]

And the 8 x 8 matrix [“'rgl can be written from equation 5.3.9 as follows,
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In Table 5.3.1 and Fig.

5.3.1 we have obtained the values of Wy"

5&,[ gnl:l Flg 3.3 1 we obtain following.

“E'I

=

for N =8 From Table

W —“"s =W® =Wt =W = = =1
. [ |
Wy =W =W =W =W =t wg"i'= ———j—
B _ 26 _ g g2 .
W =0 =Wt W =W =W =
1 |
Wl =W =W e e W WP e el L
8 8 £ B NN
S_whd owl o e o o oo 1
Wy =Wg" =W =Wg" =Wy 2 N RN
7 .1
“§=wgs=%ﬂ w“ =W =wg'l = *5H 5
Putting different values in the equation for Xy, we obtain,
"EE = [WE] "Xy i..ﬂ.,
x(m] [ 1 1 1 1 1 1 I b
x| b Loyl o gt
J2 T2 V2 T2 2 T2 2 2
X2 o ~i -1 j ! ~j -1 j I
XO)| | i J mmige -l mtiom o ——ti| |1
| 22 V2 T2 2 T2 2 T2
X4 ™ h TR U s SN T S 0
| . . .
X(5)| [l ~—=+j&= =} —=+i¢& -l —&=-ji¢ J -—=-i—=]||0
V2 T2 V2 T2 V2 T2 V2 T2
X6y |1 J -1 —j 1 j -1 ~j 0
X | m4jgs § cmtiae ol mmmmja= = =—j=| |0
S B N B NEIN! V2 T2 V2 T2
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Hence equation 3.3.15 can be written as,

-jankiny? - j2mkin Y
X (k) (e |-Z ..--1(3:"1 )

H':I _ﬂ.l"u"zl-l

Cl-g et

| —g g/ 2mk/N ... (5.3.16)

Here eI = o5 Ik — j sin 2mk

=]=jl=1 always
Hence equation 5.3.16 can be written as,
1-a”

X (k) = TN

- (3.3.17)

l-ae
This is the DFT of exponential sequence a”.
5.3.3 Properties of DFT

We have defined DFT with the help of some examples. A signal x(n) and its DFT X (k)
is represented as a pair by shorthand notation as,

x (n) '%' X (k)

Here ‘N’ represents ‘N’ point DFT. Various properties of DFT are described in this
subsection.
5.3.3.1 Periodicity

Let x(n) and X (k) be the DFT pair.

Then, if x(n+N) =x(n) for all n, then
X(k+N) =X(k) for all k - (5.3.18)
Proof :
By definition DFT is given as,
N-i
X (k) = 3 x(n)W," by equation 5.3.5 ... (5.3.18 (a))
a=10
Let us replace k by k + N, then above equation becomes,
N=1
X (k+N) = 3 x(mwytm
a=0
=1
= 3 x(n)Wy" Wy .. (5.3.18 (b))
=10
In

-J_

We know that, Wy =¢ N
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= | 21 Mn
-H_.:'::H'm — ¢ N _ E—_,I'Iﬂ:n
= cos (2an)—jsin 2nn
=1-j0
= | always

This is because for all values of *n', cos(2an)=1 and sin(2nn)=0. Hence equation
5.3.18 (b) becomes,

N1

X (k+N) = ¥ x(n)Wy"
m={l
=X (k) by equation 5.3.18 (a)

Similarly by using IDFT formula it can be shown that x (N +n)=x (n).
5.3.3.2 Linearity
The linearity property of DFT states that

if xyin) .DTFT. X, (k)
and Xy (n) = [:]:Jﬂn.!fz (k) then,
ayxyin)+asx,in) IZLTT ay X (k) +a; X,(k) - (5.3.19)
Here a; and a, are constants.
Proof :
By definition of DFT, we can write,
N=1
X(k) = 3 xim)wy"
n=0
Let x{n)=a, x;(n)+a; x5 (n), then above equation becomes,
N=|

X (k)= Z Eﬂlx|fﬂ}+ﬂ1 I:'['T]'] w.'ﬁ'ﬂ

m =[]

M=l

N-l
ay X () Wy + >, axx; (n) Wy
ﬂ=|:|

J1=|:|'
N-1 kn | ket
||=l|:| n= L

=ay Xy(k)+a, X5(k)
5.3.3.3 Circular Symmetries of a Sequence

Till now we have seen that x(m) is the sequence containing "N samples. And X (k) is the
‘W' point DFT. When we take IDFT we get a periodic sequence x , (n) which is related to

x (m) as,

xp(n) = 2 x(n-IN) w (5.3.20)

= —m
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Thus Xp (n) is nothing but peniodic repetiion of x(n). And X, (n) contains such infinite
periodic repetitions. On the basis of this conclusion we can say that if we take DFT of x , (n)
we get the same DFT X (&) which is obtained due o x{(n) ie.,

DFT
x(m) "T" Xi(k) - (5.3.21)
xp (1)« X (K) . (5322)

And x(n) and Xy {n) are related by equation 5.3.20.
Or we can write,

Xp(n) for 0€=n<N-1
xin) = - (5.3.23)
0 otherwise
Now let x , (n) be shifted by 'k’ units to the right. Let this new sequence be x}, (n). ie.
.!:}_., (n) = Xp in-k) .. (5.3.24)
= Y xln-k~-IN) .. (5.3.24 (a))
| ==a
Then the corresponding sequence x'(n) can be obtained from equation 5.3.23 as,
x;,{n) for 0ZEnsE N -1
in) = . (5.3.25)
0 otherwise

This sequence x (n) is related o x(n) by the circular shift. This concept is illustrated in
Fig. 533, Fig. 53.3 (a) shows sequence x (n) containing N = 4 samples. The periodic
repetition of x{n) is X, (n) and this sequence is shown in Fig. 5.3.3 (b). Fig. 5.3.3 (¢) shows
the sequence .r:,,{n} which is obtained by shifting x,(n) to the rght by two samples.
Fig.3.3.3(d) shows sequence x'(n) as per equation 5.3.25. The sequence x'(n) is basically one
period ﬂf.x:n{n) from0<n=<i

Please refer Fig. 5.3.3 on next page.

The sequence x'(n) is related to x(n) by a circular shift. Tt 15 represented as follows ;

x'(n) = x(n-k, modulo N) ... (5.3.26)
The shorthand notation for (n — &, modulo N)is ((a _“)'.r LE.,
x'(n) = x((n-k)), ' .. (5.3.27)

Now let us evaluate samples of x'(n) as per above equation with k=2 and N =4. Then
above equation becomes,

x'(n) = x((n- E}L

Hence, =0y = x{{vi}}d =x(2)
20 = x{(-1)), =x(3)
(D), , .. (5.3.28)
X'(2) = x((0), =x(0)
(3 = x[(lj]d =x(1)

The above relation indicate that x"(n) is obtained by shifting x(n) circularly by two
samples. Such relationship can be better understood by plotting x(r) anticlockwise along the
circle as shown in Fig. 5.3.4 (a). Fig. 5.3.4 (b) indicates the sequence x(n) delayed circularly
by one sample, ie. :({n—l}h_ This shift is anticlockwise. Fig. 534 (c) indicates
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5.3.3.4 Symmetry Properties
Let the sequence x (n) be complex valued and expressed as,

x(n) = Xgin)+jx;(n), O=sn=N-1 - {5.3.32)
Let the DFT of x (n) be complex valued and expréssed as,
X (k) =Xg(n)+jX;(n), D=k=N-1 < {5.3.33)
By definition of DFT, Voi
X (k) = 3 x(n)Wy"
m=1
In

=

I

I
Lo

|

= 2= kniN

xinle since Wy =¢ N

= =
1 B
- O

g~ 1InluN by putting for x {(n)

; )12

= [xg (n)+jx; (u}] [ms[ 2
o= 0 H
_ .nil . {n}cﬂ.'r[ Ptk ]_”F I{ﬂ}ﬂ'ﬂ[ 2mkn J
n = 0] H H
N-1l
=i rr;ﬂ [In (H‘]su’n[lf':" ] =Xy '[n,'lrcu[ 2:::” ] ]
. (5.3.34)

We know that X (k)=X g (n)+jX,;(n) Hence comparing with above equation we obtain

real and imaginary parts of X (k) as follows.
2mkn 2nkn
+x; (n)sin e (3.3.35)
N J “ ( N J]

ey
Xpik) = E {x;r{n}cm{
! 2rekn 2rkn :
_ z [:H{n]sin[—s;—]—x; [n}m.i'[ m ]} .. (5.3.36)

= [J:_q{u}+j.=:, {n}]

1
- I

and Xyik)

n=i
=

Similarly the real and imaginary parts of sequence x(n) can be obtained in terms of its
DFTs as follows {(using IDFT formula) :

1 A1 Itk | 2mkn
- - Xolk TR ox, (k . (5337
e = 8 (52 o2 s
1 A=t - 2mkn Drkn
. Xolk + X, (k =P .(5.3.38
and x;(n) NE“_ M }sm[ N J M JMS{ ~ ]] ( )

(i} Symmetry property for real valued x(n) :

This property states that if x (n) is real, then
X (N-k) =X " (k)=X(=k) .. (5.3.39)
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(iif) Real and odd sequence :
A real and odd sequence is expressed as,

xin) = -x(N-n), 0€n=N -1
Then DFT of such sequence becomes,
N=1
X(k) =~j Zx{n]sh[gjfn} 0=k=N -1 w (5.345)
m=10

For real and odd sequence X g (k) of equation 5.3.35 will be zero. This is because x; (n)
]in equation 5.3.35 cancel each

. . . 2nkn
is zero since sequence is real, and terms of xg(n)cos

other since the sequence xg(n) is odd and ‘cosine’ is even function. Equation 5.3.45 is
obtained from equation 5.3.36 with X (k)=X, (k) and x; (n) is zero. Similarly IDFT is given
from equation 5.3.37 as,

drnkn

x (m) =J—-;F E‘l’{k]siﬂ[ } OsnsN -1 w (3.3.46)
k=10

{iv) Purely imaginary sequence :
The purely imaginary sequence is given as,

x(n) =jx;(n)
Then DFT can be obtained from equation 5.3.35 and 5.3.36 as,

-1
e 0='5: 5, o 22)

r=0
) . . (5.347)
and X, :t}=’gx;{n}m[§-‘%ﬁ]
A=

Here if x;(n) is odd, then X, (k) becomes zero since “cos’ is even function. Similarly if
xy(n) is even, then X g (k) becomes zero. Since ‘sin’ is odd function.

5.3.35 Circular Convolution
This property states that if

xy(n) []:;Fl" . Xi(k)

DFT

and x3(m) - Xq(k)
Then Xy (M (@) x2 (m) o DFT | x,(k) X, (k) ... (5.3.48)

Here x.{n}g&) x4 (m) means &ﬁ'r.u.ta: convolution of x;(n) and x,(m). This property
states that multiplication of two DFTs is equivalent to circular convolution of their sequences
in time domain.
Proof :
By defimtion two DFTs, X, (k) and X, (k) are given as,
N=1

X (ky = ¥ x (n)ef2ntiN k=0,1,..N-1 ..(5349)

n=0
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Here ¢/2™ (="~} _ | always. Hence above equation becomes,

NZ_] pi2mkim-n-T)IN 1-1
Py’ l_ejl:l:tl:m—n—l'”.ﬁr
=0 when (m —n — [} is not multiple of N.
[ e (2,3.56)
. .Thus we obtained from above equation and equation 3.3.55 as,
"“E‘." Jirskimn-tun _ [ N when (m —n -l ismultipleof N (53.5T)
Pyt 0 otherwise
Putting this value in equation 5.3.53 we get,
N=1 N=1 .
w3(m) == % xi(n) 3wy @y When(mon =i
N a0 I=0 multiple of N
Z ¥, (m) Z x2(D) Whe.ntm—n—fjm
n= multiple of N
.. (5.3.58)

In the above equation {m —n — ) multiple of N can be written as,
(m=n=~1) = pN Here p is some integer.
Since integer multiple can be positive or negative both, we can write above condition for
convenience as,
m-n-[=-pN
| =m=-n+pN . (5.3.59)
Wh-l:n ‘I is given by above equation, the condition ol eguation 5.3.58 is sansf“ed Hence

pult:ng fur I" from above equation in equation 3.3.38 we gel,
=1

Xy(m) = E xp(n)xs(m—n<+pN) .. (3.3.60)
=i

Here observe that the summation for x4 ( ) is dropped since it is redundant because of
change of index. There is no'!" term in above equation.

In the above equation x; (m =n+ pN) represents it is periodic sequence with period N.
This periodic sequence is delayed by ‘n’ samples. Such type of sequences we have treated in
the begining of section 5.3.3.3.

xy(m—n+ pN) represents sequence x, (m) shifted circularly by "n' samples. This concept
is explained in Fig. 5.3.3. Such sequence is represented by equation 5.3.26 as,

ta(m=n+pN) = x3(m-n, modulo N) . (5.3.61)
or by equation 5.3.27 above sequence can be represented as,
x;(m=n+pN) :,rl((m-nj}” . (5.3.62)
Pumng this sequence in equation 5.3.60 we get,
W
x3(m) = ZI.IL (m)x; {{m n}l}H, m=01..N-1 .. (5363)
R

Let us compare the above equation with linear convolution which is given as,
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x3)
.-r"""_ ----- *2““"""'"
* ‘-‘“
A .
D
/ N AN '
2 X S
/ S ' N \
I-J _i’ ‘l.‘ ‘li
: 'l' l|I 1
: ! i s
@293 29x(2) 4092  18x00)
| j B2
.'.‘l “ ‘;_l- ll';|
% #
'.\. ‘."*-...,_‘ 3 ,*'
LT “-ﬂ._'
. = ,/

I-II '---..,,,n_,-.-

xg(1)
plotted on two concentric circles.

Fig. 5.3.8 x4 (n) and x5 ((-n))
They are mul"t'ipllid point by point

To obtain x4 (1), put m = 1 in equation 5.3.65 :
Putting m = | in équation 5.3.65 we get,

x4(l) = ir.{n}x:({l—nn‘ . (5.3.67)

a=0
Here the sequence xj((l-nm)), can be written as x,((-{n-1D),. This means
' alent to shifting

Thus x4 u]} is obtained by shifting II {—n]
This sequence is shown in Fig. 5.3.9 (b). Fig. 5.3.
Please refer Fig. 5.3.9 on next page.
MNow we have to obtain products x]{u]xz({l-ﬂ}) and their sum. This is obtained

easily by plotting x,(n)and pl‘:'Sil n) on concentric circles as shown below in
 Fig. 5.3.10. The point by point uwtwu:nqummmalms}mwnmﬁg,ﬂm

Hence x5 (1) of equation 5.3.67 becomes,
x3(l) =4 +1+8+3

=16 Thus [x3 (1) = 16

x;}{-n} . delayed by one sample, The delay of one sample is equiv
xa((-n anticlockwise by one sample. [See equation 5.3.27 and its relevant description).
ﬂ 9) anticlockwise by one position or sample,

?a] shows x4 I_:{-n}h for reference.,

Please refer Fig. 5.3.10 on next page.
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Thus x4 (2) of equation 5.3.68 can be obtamed from above figure as,
x3(2) =6+2+2+4

= 14 Thus |[x4(2) = 14
To find x4 (3), put m = 3 in equation 5.3.65 :
Putting m = 3 in equation 5.3.65 we get,

x3(3) = ix] (n)x;((3-n)), ... (5.3.69)

=il
Here x, ({3 n} is obtained by shifting x, {'I.'E n]) anticlockwise by one sample
position. This is aqmva]mt to shifting x, -({—n]) by three sampll: positions. Now here let us
use the sequences plotted on concentric circles im Fig. 5.3.12. Smexl[n} is plotted on
inner circle, and it will remain as it 15. This sequence is shown in Fig. 5.3.13 (inner circle)
below. The x5 ((2-n)), plotted on outer circle in Fig. 5.3.12 should be shifted anticlockwise

by one sample position to get x; ((3-n)),. This new shifted sequence is shown below in
Fig.5.3.13 on outer circle.

%5(2)
__ﬂ—f--ﬂ-vnh__
-~ ° "
&J‘"‘}" [:3=3] ""-.‘_
-l'. .I
e e
..f; +1-'-.ﬂ"" b b‘“\ “‘n.
] il"I ‘ii. 'ii
/ ; N '
: i \ 'I
Xa(1) {»2 2?11{2} x,{n}_?z 4{; %o(3)
y [22=4] % i [Zza=8 ;
| £ !
1" l|.I|I -I"t :

*u 1 e’
‘hﬁ--‘_.bp.-—lﬂ_.

x5(0)
Fig. 5.3.13 To obtain x5 (3)

The point by point products x, (n)x; ((3-n)), are shown in above figure. Then x5 (3) of
equation 5.3.69 can be obtained by adding all these product terms, i.e.,

x3(3) =8+3+4+1
= 16 Thus |x5(3)= 16
As per equation 5.3.63, ‘'m’ varies from O to 3. This means there will be four samples in

sequence xy ( ) ie x3(0), x4(1), x4(2) and x4 (3) as we calculated. Thus sequence x4( )
is,
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hT)
S
u-""- 1 " L.
ir" q‘\‘
hiB) " hi(0)
2 1 0%, .
s .'-"ﬂ"""i-.., "’i
[ i =
{ s y
] / wo)— :
his)¢ 3 —uiu %1 1-'::.h{1p
|1‘ "...‘ 'lﬂ; r'-l
""l._.lll1L =1 “_hhi -"‘ =1 ‘_ft
N 'Hr..n-.p-!' 'f
o4 - 2
hi4) @, A
'l‘# - 3 -F‘-‘ #
hﬁ._.b _____
h{3})
7
Fig. 5.3.16 Computation of y (1)= ) x(n) h((1-n)),
n=10

Now let us shift h{n) plotted on outer circle by one sample in anticlockwise direction.

Then multiply two sequences point to point. If we add all these multiplications, we will get
yi2)

Please refer Fig. 5.3.17 on next page.
Thus from Fig. 5.3.17

Y(2) =(1=2)+(1=eD)+(1=x0)+(I=1) +{-1x 2)
#(=1x3)+({=1xd)+(=1x3)

2+1+0+1-2-3-4-3

= -4 y(2)=-8
Mext, further shift fi(n) plotted on outer circle by one sample in anticlockwise direction.
Then multiply the two sequeénces point 0 point.

Then adding all the multiplications gives y(3). i.e. from Fig. 5.3.18 we can write,
y(3) = (13 + (1% 2+ (1) +(I=0) +(~1x1)
+(—-1x2)+{-1=x3) +(-1x 4)
=3+2+4140-1-2-3-4

- - 4 - _‘,I-'{:]] ﬂ:—"i
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hi{0)
o ™
hT) .

. 1 =

..-F"ﬁ"--h.'i
¢ -

1. i -
/ # h \
{ ;'; “"]_}"
he)b2 19 61 28 h2)
: ! ;
Lo /

o
-
-
|
r'd
&
»
2.,
-
S
‘h""""l-i-

S ﬂl-"'"ﬂ‘ "4‘"
3 =1 i
'h '/-" h(3)
1"“\-“- -

-
"!q.--__u__-._._.pll'l'

hi4)

T
Fig. 5.3.17 Computation of y (2)= 3 x(n) h((2-n)),
n=0
h{1})

_
=
¥
7

il"""'ﬁ"""""'ll.|I
. . -l .
» Ny
A Gt W
h(7)9 1 -1{} i}i 3$ h{3)
} \ / i
[l % L
\ 5, 4 H
% - o ___..--*"“:'I rd
‘..i‘ 2 -1 4ﬂ“-
hi6) @, * hid)
e o
i‘-q\.'-_.*a-__—""
h(5)

Fig. 5.3.18 Computation of y (3) = i x () h{(3 -n)),

n=0
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‘\-‘
*"h
e )
LY
%
'
L]
?
'
.I
‘..._“‘-E" "i
7
=
T
&

-,
-
bl
LT -

=
,-""'-:a-“‘-q.
LY
i--ﬁ--hh

hiT}

T
Fig. 5.3.20 Computation of y (5)= 3> x(n) h((5-n)),
n=0

To obtain y(6), shift h(n) anticlockwise by one sample position. Then maltiply the two
sequences point o point. Summation of these multplications give the value of y(6). Thus

from Fig. 5.3.21 we can write,
yi6) = (1=2)+(1=x3)+{1=4)+({1=3)+(-1x2)

(=11} +({=1=0)+{=1=1)
=2+3+4+3-2-1-0-1
=8 y(6)=8

i)

_.-i-'ﬂ!-l-._
4 ]

7
Fig. 5.3.21 Computation of y (6)= Y x (n)h ((6-n)),
n-0
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and x(m) = {1 051,051,051 05}
Putting above values in equation 5.3.76 we get,
y{(0) 000
y(1)
y(2)
¥(3)
yid)
¥(3)
y(6)
_;..r(T]J 00 03 2 0] (03]
(0% 1)+ (0% 05) +(0x 1) +{0x 05) +(0x 1) +(3 % 05) + (2% 1) +(1x 05) |
(I +(0x05)+{0x D)+ (0x05) +(0x D)+ ({0x05) +({3x 1} + (2= 05)
(2xD)+(1x05) +(0x D)+ (0% 05)+ (0% 1)+ (0x 05) +(0x1)+(3 = 05)
(3D +(2x05) + (1= 1)+ (0= 05) +(0x1)+(0x 05) +(0x1) +{ 0= 05)
(0xD)+(3=x05)+(2x 1) +{1= 05y +({0x 1)+ (0= 05) + (0= 1)+ (0= 05)
(0x1)+(0x05) +(3x1) + (2= 05y + (1= 1} +({0x 035) + (0= 1) + (0= 03)
(0D +(0=x05)+(0x D)+ (3= 05)+(2x 1) +{1x05) +({0x1) +(0x 05)
((Ox )+ (0x05) +(0x 1) +({0x 05) +(I= 1) + (2= 05} + (1% 1) + (0= (3) |
0 + 0 + 05]
0
05
1

15

il
(= = =R
(==
L S — I =
L I = == = P = =
ol == R R e TR e L
= O O o O O W

== = = -
B-8-8-8~-

=T =T I = I =T =

+ 0 + +

- oc oo o
- 0 D 0 0 WM

0
0
0
0
05
1
15
0

& g o e =
+ + 4+ + + + + *
=0 Wk = O D
+ + + + + + + +
+ + + + + + +
Wk = o D o O
+ + + + + + +
+ + + + + + +
+ + + + + + +
2o o0 o [ -

o o o o Wi o—-

P T T,

5

Thus we obtained sequence y(n) as,
y(n) = {4,5.4,5,4,5,4,5}
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x(2)
i".-ﬂ'.-“'u
x(3) " T ¥(1)
ip' u“'
i '-i
i \
x(4) @ x(n) t'? %(0) =— No shift
\ f,:'
* lI...Iu;l'
x(5) Lo AT}
""I..q_n-.p_‘
xi&)

Fig. 5.3.24 A sequence having eight (N = B) samples plotted
across the circle. This sequence has no shift

shified sequence x ((n—1)), with /=2and N = 8 is shown below in Fig. 5.3.25. The DFT of

this circularly shifted sequence can be splitted into two paris. It is given as [see two DFTs in
Fig. 5.3.25],

*(0) A%

“"'-4---‘!

:“Ed‘.“r“ n=2 ®#(7) 'ﬁh‘ih
j; S n=3 n=1 'L
g 7 E
3
|

i/ (- E
M2)Qn=4 N =8 and =0Q x(8)
a '~. I=2 |+
% n=sT J';
.rﬁm[ﬂ
T." > ::a} -6 -
ﬂr .P' “"‘IE-&-F'F.*

m x(4)
4

Fig. 5.3.25 DFT of a circularly shifted sequence is split in two parts as shown
N=1 - )

DFT {; ((n-D) H} = 3 x(n=De /2N f x ((n=0), g AN (5.3.85)
n=|

n=1{

_ Here x({n —.!}) can be written as x (N — [+ n) since this is circular shift. Hence second
summation in nhuw equation becomes,
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M=
DFT " (-} = 3 y'(-h e /2™ - (53.97)
I=0

Let m = -[, then limits of summation will be,
When (=0, n=0and
When I=N-1, n=-(N-1)
Then equation 5.3.97 becomes,
' - (- # |
DFT {J.r {—ij} = [Z y' (n) o/ TN
n=0
The sequence y (n) is circular in nature. Hence summation from 0 to (N —1) will be
same as from 0 to (N -1). Hence above equation can be written as,
L] N_l L] T
DFT {y" (-0} = 3 y'(n) 2N

a=0

N-1
!Z (n) E-jzmm]

n= [

=[r )] by definition of DFT

=Y"(k)
Putting this value in equation 5.3.96 we get,
Ry (k) = X (k) ¥" (k) .. (5.3.98)
Thus equation 5.3.93 is proved. When x(n)=y(n) we get circular autocorrelation. Then
equation 5.3.93 can be wrilten as,

Fee (1) .%. R (B)=X (k)X (k) .. (5.3.99)
We know that X (k) X (k) =|X (k)" , Hence above equation becomes,

) DFT _ . ;
Fu (0 "N Roe (0=t () - (63100

5.3.3.11 Muitiplication of Two Sequences
This property states that if

DFT
x(n) === X, (k) and

x4 (N} -ﬂ- Xy (k) then,

N
xy (n) x5 (n) -[;I—FT- %xlm@ X (k) .. (5.3.101)

This means multiplication of two saquences in time domain results in circular convolution
of their DFTs in frequency domain.
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Proof :

This property can be proved by the same method which is discussed for circular
convoltion. The proof can be started with DFT of x;(m) which is product of
xy(n)and x5 (n). Then putting for IDFTs of x| (n)and x5 (n), the derived equation 5.3.101
can be obtained.

5.3.3.12 Parseval's Theorem
Consider the complex valued sequences x (n)and y(r). Then if,

x(m) '% X (k) and

DFT
y(n) *—g— " Y(k) then

=1 N=l
Nz x(my'(m) =~ 3 X (k)Y (k) ~(5.3.102)
Nizo

When y(n)=x (n) above equation becomes,
N-1 N-1
Y ko) =LY .. (5.3.103)
mm=i N k=0

The above two equations are relations are Parseval's Theorem. Above equation give energy
of finite duration sequence in terms of its frequency components.

Proof :
Circular correlation is given by equation 5.3.94 as,

Py () = HZ': x(n)y” ((n=D), - (53.104)
For [ =0 above equation becomes,

P (0) = Hi; x(m)y" (m) .. (5.3.105)

From equation 5.3.93 we know that
DFT {F,, (D} = X (kY (k)

ie. Fop (1) = IDFT {X (k) ¥" ()}
By definition of IDFT,

N=1
o (D = X (B)Y" (k) /24N

k=)
With [ =0, above equation becomes,
N | N .
0) =— X(kE)YY (k o (3.3.106
oy (0) = Eju (kYY" (k) ( )

Equating above equation with equation 5.3.105 we have,
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N-1

Y x(m)y'in) =

mn=

This is the required relation.
The properties of DFT are summarized below in Table 5.3.3,

Table 5.3.3 Properties of DFT

1 %= .
E; X (k)¥ (k)

Sr. Name of the property Time domain Frequency domain
No. representation representation
| | Periodicity x{n)=x({n+N) X(k)=X(k+N)
2 | Linearity ap xy(n)+a; xy(n) ay Xy (k)+ay X5 (k)
x"(n) X“(N-k)
x (N -n) X"(k)
X (k)=X"(N-k)
3 | Symmelry properties Xg(k)=Xg(N-k)
For real valued x (n) + X, (k)y=—X,;(N-k)
X Gk} = e ¥ - 1)
L | ZX(K)=—-ZLX(N=-k)
4 | Circular convolution x; {n]@ x5 (n) Xj(k)X5 (k)
5 | Circular time reversal :{[—HJ}N=:{N—HJ x([—k:n)H =X(N-k)
& | Circular time shift :({n - E}}H X (k) g AmHIN
7 | Circular frequency shift x (n) /2=N X((k-D0),
x"(n) X" ((-k)), =X"(N-k)
& [Complex conjugate propertics <" “_"}}H =x"(N=k) X" (k)
9 | Circular correlation F;:, (N=x(l) @ y (- | X (k)Y (k)
10 | Multiplication of two sequences | x; (n) x5 (n) lg[(,l;}@ X 5(k)
N
N =1 2 1 N -
(n —_— (k
P e (n) N X ()
11 | Parsevals Theorem 1 N=1 . ] Nt .
Y xin)y (n) — (k)Y (k)
=0 N <o




Hidden page



Hidden page



Hidden page



Digital Signal Processing 338 DFT, FFT and their Applications

h{1)=2 x1)=1
"_,...---ﬂ'-n..._‘.h ...—F-'u--lh_‘h
.-r".' "'|‘ l-.'-:‘ I“"'hi-
/ 4
i 5 ."‘ .\l‘-.
h(2) =0 d: h{n) il hio)=1 x(2)=0 ? xin) i,r w0y =2
} / { {
! ! h! !
1-## '.r* '1'\. 'i-'
""u.,_ *,..-"' “m,_b ‘_,.l‘"‘
-._.‘_u._.__- "’“"‘""ﬂ'"‘"-
h(3)=0 x3)=0
Fig. 5.3.28 (a) Sequence h (n) (b) Sequence x (n)

The circular convolution of x(n)and h(n) is given as,

yim) = ﬁ hin) x ([ﬂ""":l]4 , m=01L23
a=0

y(0) = i h(n}:({-—n}}‘*
aw=l

Fig.5.3.29 shows hi{n)and x (Ll—n}h plotted on concentric circles to obtain y (0L
X |:|[—-r'|j|:|4 is obtained by circular folding of x (n) of Fig. 5.3.28 (b).

wAy=0
,.i"_--'.#--'“"l"‘h
ﬁf;.-"'.‘ “ﬂ"’\\
£ h(1)=2 "
’ S = T ™
£ o \ ¥(0) = (1x2) + (20)
/ & ™, + (0x0) + (0x1)
J‘r r" l‘I:"'q,._ “ =2+0+0+0
i / \ ! "2
x(2)=09 n{2}=uq:r iin[u]=1 @ x(0) =2
LA ;o
% L F #
1 "1.‘ r
t“‘ .‘* ,/" ;r"'
n-‘.._n__—l' L
“‘.‘,“ h:a.} =0 “f"
. o
H“h‘ "*_'i
Tre. T F"'-'*
(1) =1

Fig. 5.3.29 Circular convolution to obtain y (0)

As shown in Fig. 5.3.29 the two sequences are multiplied point by point and the products
are added. The value of y(0) =2 as obtained above.
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hin)y={ h(0),h(D),...A(M-1) 0,0,.....(L - 1zeros) I
]'-'['slmpl:r-ﬂumtmnpkm{mu {I.. lhurmwpddndlumhcﬂ “L+M~-1 total samples |

. (5.3.120)
Thus as shown above h(m) also contains N =L + M -1 samples. The N-point DFT of this

R(n) will be H(k). Let the DFT of m™ input data block be X _ (k) and comresponding DFT of
output be ¥, (k). i.e.,

Vo lk) = HIK)X, (k), k=01..N-=] (53121
The sequence ¥ (m) can be obtained by taking N-point IDFT of f’ml:k]-. Then the
individual samples of this sequence can be represented as,
}'h.l:u- (n) = {J"ﬂm (0), j’m “}-j’n (M -1), .';'m (M), j’m (M +1), im (N "1}} . (5.3.122)
This type of sequence will be obtained due to input data blocks x,(n), x4(n), x4(n),... elc.
The sequence ¥, (n) contains N =L + M -1 samples. Observe that in x;(n), xs{n), x5(n)...
etc. initial M -1 samples are taken from previous segment ie. overlap, and last 'L samples are
actual input samples. Because of this overlap of initial (M —1) samples in input data block,
there is aliasing in initial (M —1) samples in the corresponding output data block ie. ¥, (n).
The aliasing effect occurs because of circular shift and overlap of samples in computation of
DFT. Hence the initial (M —1) samples of ¥, (n) must be discarded. The last L' samples of
Vg (1) are the correct output samples. Hence the actual output samples to be considered in
every output block are,
Vmin) =yg(n) for n=M M+L...N-I - (3.3.123)
Such blocks are fitted one after another to get the final output. The overlap save method
discussed above is illustrated in Fig. 5.3.31.

Please refer Fig. 5.3.31 on next page.

5.3.5.3 Overlap Add Method for Linear Filtering

In this method the data blocks of length N=L + M =] are formed by taking 'l samples
from input sequence and padding M —1 zeros as shown below.

xp(m)={  x(0),x(D),..x(L-1) 0.0,......0 ... (5.3.124)
‘L' samples of inpu-'[ data sequence x(n) {M-1) zeros an.-Eadd.:d at the ead

.Ia:_{ﬂ!}li .I{L}.::I:L+I} ..... .:'(EL-I}I . ... 0 ... (5.3.129)
| Mext 'L samples of inpui sequence X Ifn:l rM I} zemos mpi-:ldnd at the emd

xy(n)=4 :x{EL},.r[EL+l} x{3.‘..—l}| ] ﬂ.'fl ....... U} . (5.3.126)
| Next’L' samples of input sequence x (n) {M n zeras
Thus each data block is of length 'N'. The N-point DFT ¥, (k) of the output is oblained
by multiplying H (k)and X , (k). i.c.,
' Yo (k) = H(k)-X_ (k), k=01..N-1 o (5.3.127)
Here H(k) is N-point DFT of vnit sample response h(n)and X, (k) 158 DFT of m™ data
block.
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The sequence y, (n) is obtained by taking N-point IDFT of ¥, (k) Thus samples of
sequence ¥, (n) will be,

¥ (n)= {y, (00, yy (D oy (L =10, % (L), vy (L41), .oy (N —l]} .. (5.3.128)

¥z (n)={y3 (0), y2 (1)... ya (L=1), y3 (L), y2 (L +1),... 32 (N =)} - (5.3.129)

Similarly other sequences are obtained. We know that each data block is terminated with
M =1 zeros. Hence the last M -1 samples of each output sequence must be overlapped and
added to first M -1 samples of succeeding output sequence. This is done since the sequence is
appended with zeros at the end. And hence the name overlap and add is given. For example
the output ¥ (n) due to overlap and adding of y; (n)and y, (n) is given as follows :

y(m) = {3y (0),yy ), ... yy (L=1),[y; (L) +y5 (O] [y (L+D) 4+, ()],

covee [71 (N =1) # 32 (M =1)], y3 (M), .....y3 (N -1} . (5.3.130)

This process continues till the end of input sequence. This algorithm is illustrated in
Fig.3.3.32 on next page. '

Here note that the (M —1) overlapping samples of the output blocks are not discarded. This
is because the mput data blocks are padded with (M —1) zeros to make their length equal to
'N'. Hence there will be no aliasing (effect due to circular shifting and overlap in DFT) in the
output data blocks. Therefore for the last (M —1) samples of current output block must be
added to the first (M —1) samples of next output block. This is the major difference between
this method and overlap save method, In overlap save method the initial (M —1) samples of
every output block are discarded since they are aliased due to overlap.

Comments :

Even though overlap save and overlap add methods seem to be complicated, the
computations involved actually are less compared to linear convolution. This is because DFT
can be computed fast wsing FFT algorithms. These algorithms compute DFT with very small
number of computations. These algorithms are discussed in next section.

5.3.54 Frequency or Spectrum Analysis using DFT

When we want to analyze the spectrum of the signal its fourier transform is taken, For
example consider the sequence x (n) and its fourier transform X (w). Since X (w) is continuous
function of 'w, it is not possible to analyze X (w) on digital computer or digital signal
processor. Hence DFT of the signal can be used for spectrum analysis.

The signal to be analyzed is passed through the antialiasing filter and sampled at the rate

. : . F .
of F, 22 F,,,. Hence highest frequency in the sampled signal is ?’ For spectrum analysis

some finite length of the sequence is taken. Let 'T" be the sampling interval and 'L’ number of
samples of input sequence are taken. Then the time interval of the sequence will be T = LT. It
can be shown that the time interval of the sequence should be as large as possible. Because

the smallest frequency resolution is given as .Ti Let the 'L’ number of samples of the sequence
L]
x(n) be obtained by multiplying x {n) by rectangular window w(n) of length 'L". i.e.,
in) =x(n)win) . (5.3.131)
Here w(n) is the rectangular window which is given as,
~ {l, for 0gns L=
win) =

. .. [5.3.132)
0 otherwise
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Let x (n) be the cosine wave consisting single frequency which is given as,

x(n) = cos(wy n) .. (5.3.133)
Then the finite length sequence X (n) becomes,

Ein) =cos{mgmn) for Os=nslL-] ... (5.3.134)
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Hence equation 5.4.6 becomes,
ke Y _jir,
W, 2 =-¢ N
.
=-Wg, since e N =W,
FI‘[I'I-'E “““- WH': =w||.r11 . {5.4.?}
_j2=
We know that Wy =e N
In this equation replace 'N' by N/2, i.e.
. 2T
Wy = NI2
; &R
e N
| 2n
1 BT
=Wy since ¢ =Wy

which is same as equation 5.4.7.

The direct computation of DFT does not use these properties of W,,. The FFT algorithms

exploit these properties of Wy to reduce calculations of DFT as discussed next.

5.4.3 Classification of FFT Algorithms

The FFT algorithms are based on two basic methods. The first one is divide and conguer
approach. In this method the 'N' point DFT is divided successively to 2-point DFTs to reduce
calculations. In this method, Radix-2, Radix-4, decimation in time, decimation in frequency etc

type of FFT algorithms are developed.

The second one is based on linear filtering. Based on this method, there are two

algorithms. Goertzel algonithm and the chirp-z transform algorithm. This complete classification

is listed below in Fig. 5.4.1.

Computation
of DFT
3
+ |
Dwicle and DFT as
conquar approach lnear filkering
1
1 3
Chirp-z Goertzel
transform algorithen aigorithm
Radix-2 FFT Fadix-4 FFT Spiit-Radix FFT
wigerithms aqurithms akgoathms
| |
| 1
DITFFT OiF FFT
algonahms algarithms

Fig. 5.4.1 Various FFT algorithms and their classification
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x(0) *{(0)

K1) —— *(1)

x(2) 8 - point X(2)
DFT

x(7) —— ‘ X(7)

Fig. 5.5.1 Direct computation of 8-point DFT

diagram for this operation. In Fig. 55.2 observe that for B-point x(n), the sequences
fi (m)and f, (m) are given as [see equation 5.5.1],

_ x{(2n)=2x(0), x(2), x(4),x(6)
fi(m) = { } N Point Sequences - [5.5.9)
falm)= x(2n+1) ={x{1}.x{3},x{5}+1{7}} 2
f,{m) = x{2n)
F, (0
40 =x0 — L RCAN
Li F.i1 a5e values
1) =x2) — 2 E:-,m 1) X(1) | are obtained
i.e. Fql2) by putting
f1 ‘2} = x{'i} - | 4 - pll:ldl'lt I x[?] k= DI‘IEI‘H
F.(3 in equation 5.5.7
hay=xe) — O 1) - X(3)
falm) = x(2n+1)
F
E5(0) = 2[1) e N 2A0) - X[0+4) = X{4)
L Fal1 These values
Lty =wa) — 27 g |2 . x(1+4) = X(5) | are obtained
Le. Fol2) by putting
12(2) = ®(5) —— 4. point [ X[2+4)=X(6) [ k=0,1,23
DFT | Fyld) in equation 5.5.8
f2(3) = x(7) —— X[3+4) = X(7)
This block combines.
two 4-point DFTs

according to equation 3.5.7
and equation 3.5.8

Fig. 5.5.2 8-point DFT of X (k) is obtained by combining
two 4-point DFTs F; (k) and F; (k)

As shown in Fig. 5.5.2 wo % - point DFTs are to be computed separately and then they

are combined as per equation 5.5.7 and equation 3.5.8 to get N-point DFT.
Second stage of decimation on fi (n)and f3 (r) :

We know that fi(n)and f5 (n) are % point sequences. Let f, (n) be splitted into even
numbered samples and odd numbered samples as follows :
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v (r) =) (2n), n=0,1,.% -1
) - (5.5.10)

ard via(n)=f (2n +1), H=ﬂ,].,...%-1

Here observe that v, (n) is even numbered sequence of f, (n) and v; (n) is odd numbered
sequence of f (n). Since fi (n) contain N/2 samples. v;; (n) and v;; (n) contain N/4 samples.
Similarly f5 (n) can be splitted into even and odd numbered sequences as follows :

()= fi2m) . n=01.. %
4 o (5511
and vy (m)= f;(2n +1), H='D.L...-:‘i—1

v (n) is even numbered sequence of f; (n) and
vy (1) is odd numbered sequence of fy (n). Both v, (n)and v4y (n) contain %'} samples
each.

We obtained I{k}mdﬁ[k +%] of equation 5.5.7 and equation 5.5.8 from F, (k) and
F5 (k) with f; (n)and f5 (n) as decimated sequences. The length of DFT was -‘;—r By using the
similar method we can obtain Fy (k)and Fl[k+%] from Vj, (k)}and Vi5 (k). Here V|, (k) is

% point DFT of vj; (n)and ¥j; (k) is ; point DFT of v5 (n) of equation 5.5.10. i.e.,
N

Fy (k) = Vi, (k) + Wik ja Via (), k=01...2-1 . (5.5.12)
Fl[t +%J = Vjy (k) = Wi sp Via (K), k=l:l1.,..%-1 v (5.5.13)

Compare the above two equations with equation 5.5.7 and equation 5.5.8. In equation 5.5.7
and eguation 5.5.E N-point DFT is obtained from two “;—pnint DFTs. In the above equations
% point DFT (i.e. F, (k) is obtained from two i:- point DFTs.

Similarly we can write equations for F; (k) as follows,
N

Fy (k) = Vo (k)+ Wy Vog (), & =U'L'“'4'_1 .. (5.5.14)
Fs (h-"-:-] = Vi (k) = Wi g Via (k). k=&L...%—1 .. (5.5.15)

Here V5, (k) is % point DFT of v4, (n)and vy (k) is % point DFT of vay (n) of equation
5.5.11.
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Recall the example of &-point DET :

Now let us recall the example of B-point DFT. As shown in Fig. 5.5.2, F (k)and F; (k)
are two 4-point DFTs cnmpul:n:] directly. These two DFTs are represented by single hiu:l:s
symbolically as shown below in Fig. 5.5.3 below.

il —— Foi0) o — ——— Fyi0)
h—i I Ser F—Fdn IR Bl S
e, i,

W2l —— 4.poimt —Fu® 2 —— 4. potu |——F2i®)
DFT DOFT
T R — Fy{3) 143 — = F 33}
@] & symndic reprasantalion (0] & SymGphic napraseniaton
pl‘-l-purrll:.‘ll-_TF.llh'll,qlrg ;.H‘-I-pnrﬂEIFTFJLt:-umﬂ

dirgcl computabon direcl compaiabion
Fig. 5.5.3

Fy (k) can be obtained from V), (k)and V)5 (£) as per equation 5.3.12 and equation 5.5.13.
For N =8 V|, (k)and V|, (k) will be % i.e. 2-point DFTs.

Fig. 5.5.4 (a) shows the symbolic diagram for this operation. In this figure observe that for
4-point f; (n) the sequences vy (n) and v; (n) are given as (see equation 5.5.10),
vy () = filln)=x(4n) = {x{[}}. .xH]} . n=01

N )
- — point segquences ... (5.5.16)
v (n)= fi(2n+D=x(4n +2)={x(2.x(6)},n=01| 4

Thus as shown in Fig.3.5.4(a) the twu% - point DFTs are to be computed separately and

then they are combined as per equation 5.5.12 and eguation 5.5.13 1o get i:- point DFT of

Fy (k).
Fig. 5.5.4 (b) shows the computation of F; (k) as per equation 5.5.14 and equation 5.5.15.

In this figure observe that the two %:— point DFTs are combined. In this figure observe that the

% point sequences vq (n)and vy (n) sequences are given as [see equation 5.5.11],
v (i) = fa(2ni=x(dn+1)={x (1), x(5)},n=01 .
° /2 { } r - E point sequences ... (5.5.17)
var () = fa (2n+1)=x(4n +3}={IE3}.I{?J}..H=|1IJ_ 4
Compurarion of 2-point DFTs ;

!

The % point sequences of equation 5.5.10 and equation 5.5.11 are further splitted in their

even and odd parts. Hence we get next stage of decimation and the sequences will be of
length % The procedure discussed till now can be repealed further to compuie the DFTs, till

we reach to 2-point DFT. Since N =2", we reach to 2-point DFT after (v =1) decimations. For
example for N =8, we performed 3 —1=2 (since v =1) decimations and: we reached to 2-point
DFTs as shown in Fig. 5.5 4. Now let us see how 2-point DFTs can be evaluated.
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¥vy4(n) = fy{2n) = x{4n) N
-point | V(0) 1
vyq(0) = 1,0} = u(0) — ¥ S:—r L ‘\ /'-(- = F4(0) } E?hl:ﬁhy
i.e. Viq(1) . _
virl) =2 =x(4) — 2. point [ Rl F::rhqnfagmué.is.iz
DFT . !
| |
[V42(n) = y(2n+1) = x{dn+2)] * :
vyal0) = (1) = 3-point |V1al0) W i = £z T values
1200 = {1} =x(2) — * per 1 ~»i— F4(0+2) = F,(2)) are obtained
oAl = £ (21 = e [Viz(l) WJ/ \ i ) h}r_putlln-;
1201 =5(3) =6 —1 2. poim 4 SRl =F@jk=ot
DFT - i im agu
This block combines 3.3.13

two 2-paint DFTs
according o equation 5.5.12
and equation 5.5.13

Fig. 5.5.4 (a) 4-point DFT of F; (k) is obtained by combining
two 2-point DFTs of V4, (k) and Vi3 (k)

Va1(N) = 15(20) = x{an+1)
% . point |Vas(0) : These val
0 =100) =x(1) — @ OFY 7 F20) | gre um:?r:?hb'
var(1) = 142) = x(5) N N4 Fy(1) | Buting k=0.1
# 1 2 hﬁ"t 1 in equation 5.5.14
tv::{n]=lz{2n+1]-=x{dn+3jl - . ;
- Vas[0) 1W i These values
a0 =t =xi9) —| o [ o202 ) e ctane
Vasl1) |W - by putting
var(1)=H(3) =x(T) — 2 .l;m 20 Fa(1+2) = F,(3)| k=0,1
DFT I.............--....,-..:.‘.. in equation
This block combines 2515
two 2-point DFTs

according o equation 5.5.14
and eguation 5.5.15

Fig. 5.5.4 (b) 4-point DFT of F; (k) is obtained by combining
two 2-point DFTs of Vyq (k) and Vay (k)

By definition of N-point DFT,
N -1
X(k)y = 3 x(m)Wy', k=01..N-1 . (5.5.18)

a=10
Let us see the computation of 2-point DFT V), (k) of Fig. 5.5.4 (a).
From Fig. 5.5.5 we can write equation 5.5.18 as,

Vi (k) = '}: v (MW, k=01 .. (5.5.19)
n=1
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Fig. 5.5.7 Signal flow graph and stages of computation
of Radix-2 DIT DFT algorithm for N=8
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5.5.2.2 Computational Complexity

Observe that the butterfly operation of DIF FFT given in Fig. 5.5.11 is similar to that of
DIT FFT given in Fig. 5.5.9 except multplication by factor Wy . Hence the butterfly of

Fig.3.5.11 also needs one complex multiplication and two complex additions. Since there are g

butterflies per stage and there are v=log, N stages, there are total -{;rxv butterflies in the

computation. Hence we can write,

MNumber of complex multiplications = gx v
= %Iﬂgz N . (5.5.50)

Number of complex additions = 2:[%! v] =Nlogs N - (5.5.51)

Thus the computational complexity of DIT FFT and DIF FFT algorithms is same (see
equation 5.5.27 and equation 5.5.28).

55.2.3 Memory Requirement and Inplace Computation

The butterfly operation of this algorithm can be implemented similar to that of DIT FFT.
The value of 'A" can be stored where ' was stored and 'B' can be stored where 'b' was
stored. This is called inplace computation. A —a and B - b are complexed valued. Hence two
memory locations are required to store each of them. Therefore the memory locations required
for in place computation of one butterfly are [see equation 5.5.31],

Memory locations for one butterfly = 2x2=4 - (3.5.52)

The computations are performed stagewise. There are -';i butterflies in one stage. Hence

memory requirement for computation of N-point DFT becomes [see equation 5.5.33],
Memory requirement of N-point DFT = 4 = %=IH .. (3.5.53)

Thus the memory requirement of DIF FFT is same as that of DIT FFT. The maximum
N

memory requirement including storage of twiddle factors will be 2N +E.
5.5.2.4 Bit Reversal

In the signal flow graph of Fig. 5.5.12 observe that the input sequence is in natural order
but output DFT sequence is in bit reversed order. In DIT FFT, the input sequence is in bit
reversed order. Hence to get DFT in natural order it should be read in bit reversed order. The
common bit reversal algorithm can be developed. This algorithm can be used to reshuffle the
input sequence in bit reversed order. Such algorithm can be used for DIF as well as DIT
algorithms.

5.6 Goertzel Algorithm
We know that the FFT algorithms take M-data points of the sequence x (n) and compuie
N-points of DFT. This requires gfagzﬁ number of complex multiplications and N log, N

complex additions. In some applications the DFT is to be computed only at selected values of
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k (Le. frequencies). When these selected values are less than Jog, N, then direct computation of
DFT becomes more efficient than FFT. This direct computation of DFT for selected values of
frequencies can be realized through linear filtering of x(n). Such linear filtering for
computation of DFT can be implemented using Goertzel algorithm, which is discussed below.

Consider the factor Wyt¥

In iz
= -(-kN) =i —=
Wy =g N since Wy, =e N
= l,,Jiill:
= pos 2n+ jsin2n=1+;0
=1 always v (3.6.1)

By definition, N-point DFT is given as,
N-I
X(k) = ¥ x(m)Wy"

m=10
If we multiply RHS of above equation by H",;m. the value of X (k) will be unaffected
since Wy =1 ie.,
N=1
X(ky = 3 x(m) wm.wyt
m=10
A& KiN
= 3 x(m) Wt - (56.2)
m= )
Let us consider the LTI system shown in Fig. 5.6.1 which has input x(n). Let the unit
sample response of this system be given as,

hy (n) = '.'I-"jl"‘ uin)’ o (5.6.3)
Input Unit sample response, Output
x(n) hy{n) = wuh u{n) ¥iln)

Fig. 5.6.1 The LTI system with unit sample response
hy (n)=W,;*" u(n) and input x (n)

Here 'k' is fixed (constant) for this system. We know that linear convolution of
x(n)and h; (n) gives the output sequence y, (n) of LTI system. ie.,
o
yeln)y = 3 x(myhg(n-m) . (5.6.4)
e -
Putting for &, (n) in above equation from equation 5.6.3 we get,
yi (n) = 5;: x(m) WN”””"']' uln—m)
M= -

In this equation x (m) is given for 0 < m < N -1 for N values, hence limits on summation
will be changed as follows,
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5.11 Computation of Fourier Transform
We know that fourier transform of the discrete time signal x (n) is given as,

X (w) = i x(n) eon e (S.1L.1)

Nz-m

Let the sequence be causal having N’ samples. Then above equation can be written as,

N-=I
X(w) = 3 x(n) e . (5.11.2)
=i
We know that e~/ = cos (wna) - j sin (wn). Hence above equation can be writlen as,

N=I
X(w) = ), x(n) [cos (wn) - jsin(wn)]
rn=1

N=1 N-1
= ¥ x(n)cos(wn)—j 3, x(m)sin(wn) - (5.11.3)

=10 A=10

Thus X (@) has real and imaginary parts. The real part of X (@) is given as,
Re [I [m}] = HE_‘I x{n)cos (wn) e (5.11.4)
=i
And imaginary part of X (w) is given as,

Im[X (@)] ==Y x(n)sin(wn) w (5.11.5)
n= i
The 'C' program for computation of fourier transform is given below :
//fils nams : fouriar.cpp

/*= Fourier Transform of the sequence and computation of transfer function =%/
'

i This program computes the fourier transform of the sequence x(n)
i and plots its magnitude and phase transfer function

£ characteristics on the screen.

A

' Inputs : 1. Number of samples of xi(n}

i/ 2. Values of samples of x(n}

£ 3. Frequency w at which fourier transform
A is to be evaluated

£

' Cutputs : 1. Xiw) at given value is displayed.

'y 2. Magnitude and Phase plots for 0 to pi
£ . values of w are displayed on screen.

£

oy Asaumptions : 1. This program is for written real

iy values of seguence xin)

'r 2. Magnitude and phase transfer function
o plots are computed for x(n) for 0 to pi
K valuas of w.
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flcaleculation of magnitude of transfer function
phase(k] = atan (XwImag, XwReal) ;
} //calculation of phase of transfer function

f/  HWext part of program displays the magnitude & phase on the screen
£ which is calculated at 640 polnts by previous 'for' loop

detectgraph(&gd, &gm) ; /7 detect graphics mode & graphics driver
initgraph(&sgd, &gm, """} ; 4 initialize screen in graphics moda
setlinestyle (DOTTED LIME,1,1}); £ dotted line style for x-axis
line (0,250, 640,250} ; ff ®m=axis line for magnitude
line (0, 350, 640, 350 ; ff m=axis line for phase
for(k = 0; k < 640; k++) // this locp puts 640 pizels of
[P magnitude and phase on the screen
yMag = 250 = mag[k]*200; f/magnitude scaled for proper display
putpixel (k, yMag, YELLOW) ; //put pixel of magnitude on the screen

yPhase = 350 - phase[k]*50; ff scaling of phase
putpixel (k, yPhase, GREEN) ; Ff put pixel aof phaze
}
ocuttextxy (300, 260, "Magnitude plot"); // label of magnitude
cuttextyy (500, 450, "Phase plot™); /¥ label of phase
getch(); Jf wait for observation
closegraphi()
b
R e End of program —--——==—--=-———msccmcmsmam—ee—nee

The above program first accepts the total number of samples N and their values. The first
for loop performs this function. Next the fourier transform is computed at particular value of
frequency '«/. This frequency is to be entered by the user {between 0 to ).

XwReal = XwReal + x[n] * cos ((wen);
Awlmag = XwImag + x[n] * sin(wen) ;

The first statement computes real part of X (w) according to equation 5.11.4. The second
statement computes imaginary part of X (@) according to equation 5.11.5. X¥wImage is made
negative as required by equation 5.11.5 after the for loop ie.,

¥wImag = Xwlmag* (=1.0)
Then the program prints value of X (@) at given value of "ol as
X (w) = Real part +j Imaginary part

The next part of the program computes magnitude and phase of X (@) in the range of

0 to o X (@) is continuous function of "w'. But magnitude and phase of X (@) is computed at

640 points in 0 to = Hence " is increased in steps of %

witep = pi/640.0;
This statement computes the incremental step of "o
Next there is for loop which computes magnitude and phase of X (w) for 640 values of
"w in the range of 0 to = The aray mag [k] stores magnitude of X (w) at k™ value of m

Similarly the array phase [k] stores phase of X (@) at k™ value of o The two statements,
magl[k] = sqrt(XwReal® XwReal + XwImag* XwImag)
phase[k] = atanXXwImag, XwReal)
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The first statement computes magnitude of X (@) at w; =$k ie. k™ value of @ The

second statement computes phase of X (w) at @y =$i’ ie. k™ value of m

The next part of the program displays magnitude and phase on the screen. Graphics mode
initializes screen in 640 = 480 pixels. Thus we can plot 640 pixels on the screen. The last
for loop displays these pixels. Magnitude and phase both are computed at 640 points. These
640 points are displayed as pixels on the screen, The pixels are displayed after proper scaling.

An example to test this program :

Refer to example 5.2.6. In this example we have computed fourier transform for h(n)
which is given as,

h(n) = {05, 05}

The magnitude and phase plots of fourier transform of h(n) ie. H(w) are given in

Fig.5.2.1for -rswsn

Let us consider the same example to test this program. Here we will call h(n) as x(n).
This is just notation. Hence enter the number of samples as 2 and,

x =0.5
x(Q) =0.5

Let us compute fourier transform at mn% = 20943951

The results of the program for these inputs are given below.

f e e e e e e cm s ssns RRRULEE = o o
Fourier Transform and computation of tramnsfer function

Enter the number samples in the sequence x(n) 2

Enter the samples of sequence x{n)

®{0} = 0.5

x(1}) = 0.5

Enter the fregquency w at which fourier transform is

to be evaluated wibteween 0 to pl) = 2.0943951

The value of fourier transform is

¥iw=2,094395) = 0.250000 + §{-0.433013)

press any key to see magnitude and phase transfer function plots

o o o o T o T T T o o - o S o s o S - R

As shown in above results,
Xiw = 2094395) = 0.250000 + 7 (- 0433013
From equation 5.2.32 in example 5.2.6 we have obtained expression for H (@), [here X (w)]

Xiw) = %{l+mm}—j %sirlm

At w= 2094395 above equation becomes,
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Magnitude plot

Phase plat

Fig. 5.11.1 Magnitude and phase plot of X («) displayed on the screen for
x(n) ={05, 0.5} at 640 points in 0 to =

X (m=£;—[=1l]94395] = 025~ 04330127

This value is same as that computed by the program.

Fig. 5.11.1 shows the magnitude and phase plot of X (w) displayed on the screen. Observe
that these plots are successive display of 640 pixels on the screen. The curves look like
continuous plots on the screen. The plots of Fig. 5.11.1 are shown for 0 to = Observe that
these plots are similar to those shown in Fig. 5.2.1 earlier. The plots of Fig. 5.2.1 are for

=t to T

3.12 Computation of DIT FFT Algorithm

Here let us see the implementation of radix-2 DIT FFT algorithm. The approach is
simplified and based on the signal flow graph. A 'C' program is given below. This program
computes the DFT of the complex valued sequence of length 'N'. Note that N=2" and v is

some integer.
J/file name : ditffe. app
f e eemeeeem=== RAdix-7 DIT FFT Algorithi —=—===rrosmesmsmmseae et f
A
rr This program implements the radix-2 DIT FFT algorithm for
' the complex valued sequence of length N
A
' Inputs 1. Humber of samples of xin)
' 2. Values of samples of xin}
oy
A Outputs : real and imaginary part of
oy DFT K{k}.
i
i Assumptions This program is for written for
'r inplace computation. The data storage
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for(i = 1; i <= 2%N:)

{ !/ this loop computes M/2 butterflies in cne

i stage of decimation

ff  following four statements compute real and imaginary parts
i one butterfly

real k0 = data(i]+cosTheta*data[i+p]+sinTheta*data[i+l+p];
imag_k0 = data[i+l]+cosTheta*datai+l+p]-sinTheta*data(i+p]:
real kl = data[i]-cosTheta*data[i+p]-sinTheta*data[i+1+p]:
imag kl = data[i+l]-cosTheta*datai+l+p]+einTheta*data(i+p]:

data(i] = real_k0; A the newly computed real and
data[i+l] = imag_kO; f imaginary parts of the
data[i+p] = real kl; A butterfly are stered in
data[i+p+l] = imag_kl; o place of prevoius values
£ Ithis is "in place computation®
if {n<k)
{ £
1 =1+ 2; nesj JE
t=t + 1; A
Theta = ({(2*pi) /S (Eloat)p) *L; A | this if-else loop
cosTheta = cos(Theta) ; | adjusts the
ginTheta = gin(Theta]; R | counters and
} else f phase factors
{ ff1 as required
1 =4 4 p+2; N in one stage
nel; t=20; fi of decimation
Theta = ((2*pl)/ (floak)pl*t; /S|
cosTheta = cos (Theta) ; P
sinTheta = sin(Theata); P |
}
}
k=k << 1; £ adjust counter for next stage of decimation
m#+;
}
R it DIT FET computation completes -----—-—====-=7-=-==eeee===-
ffemmmm=a Hext part displays computed DEFT on the screen =ssssssssoooo-o

printf {"\nThe DFT is as follows...\n");
printf{"\nreal part of Xi(k) imagninar pact of X(k)™);
forin = 1} n <= H; n++)

{
printf{"n%f it %f",dataf[2*n-1)],datal2*m]};

e End of program ==-====ssssssseses s ssmnms e

The first part of the above program accepts the complex valued sequence x(m) The
variable N represents the number of samples of the sequence. The array data[2050] is
used to store upto 1024 samples of input sequence x (n). Here note that the length of the array
data can be increased or reduced. The sequence x (n) 15 stored in array data as follows :
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data [1] data [1) I-—::eal k0
data (2] data [2] |4.— imag k0
dara {3] data [3] Iq— real kl
data (4] data [4] |-— imag k1
dara [5] data }5] tq— real k0
data [&] dara (6] Iq— imag k0
data [7] data [7] |- real_kl
data [B] data [8) -— imaq_l:'l
data [9] data [9] +— real kD
data [10] data [10] | =*+— imag kD
data [11] Wt data [11] | +— real k1
data [12] -1 data (12] | *— imag_k1
datas [13] data [13) |+ real_kD
data [14] ' data [14] | = imag_kO
o
data [15] W data [15] |*+— real kl
data [16] -1 data [16] | iimag_kl

Fig. 5.12.3 First stage of computations. The results are stored in the same array

The computations of various butterflies as shown above are performed repeatedly according
to the following process. Fig. 5.12.4 shows the generalized butterfly in any stage of
decimation/ computation.

Please refer Fig. 5.12.4 on next page.
The computations in above butterfly are performed as follows :

Let Theta = =%.f . (5.121)
p
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These are the statements used in the program. The for loop thus computes values of one
butterfly. There are such % butterflies in every stage.

In the same for loop, there is if-else statements. These statements adjust the
il
_l|| p— 1
counters of array and phase factors ¢ 7 as required for computation of generalized butterfly
in any stage.

The last part of the program displays computed DFT on the screen.

To test the program :
Now let us check this program. Consider the example 5.3.1. In this example, sequence

X (m)is given as,
x(n) ={0,1, 23}
The DFT of this sequence is obtained in the example as,
X (k) ={6-2+2j,-2-2-2j}
The sequence to be enlered to the program as,
x(0) =0+0 ie. 00
x(l) =14+ 0 ie. 1 O
x(2) =240 ie.
¥(3) =3+0 ie
And the expected DFT is,
x(0) =6+j0 ie. 6 0
x(l) ==2+12f ie. =2 2
x(2) = -2+ 0 ie. =2 0
x(3) ==2=-1j ie. =2 =2

The results obtained by the program are presented below :
Jmmmmes e ————————— - FESUlLS ~—=es s ss s s —————————
Radix=2 DIT FFT algorithm

0
0

L D

Enter the number of samples in the sequence xin), W =4

Enter the samples of seguence x{n}
real part imaginary part

x(0) =00
x{l}y =10
x{2y =20
®xi{3) = 310

The DFT is as follows...

real part of Xik) imagninar part of X(k}
. 000000 Q.000000
=1.598738& 2.000000
=2.000000 0.000000
-2.001264 -2.000000

S ———————————_ PR e TR e

Thus the m#ram provides the same results,
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5.13 Inverse DFT and Computation of IDFT using FFT Algorithms
From equation 5.3.2 we know that DFT of the sequence x (n) is given as,

=1
X(k)y =3 x(me ™V p=012..N-I . (5.13.0)
n=1
And from equation 5.3.3 IDFT is given as,
N-1 _
x{n}=-;.r~ S oX(k)e™ N pe0 L2 N=1 .. (5.132)

k=0

In the above equation observe that terms under summation are similar to that of DFT
except the sign of exponential term. Hence it is possible to use FFT algorithms for the
computation of IDFT. For example is we want to use DIT FFT algorithm for computation of
IDFT, we have to arrange X (k) in bit reversed order. Then interchange the 'signs’ of phase
factors. The result obtained by the algorithm is divided by N’ to get sequence x (n).

For example let us see what will be the modifications in the program presented in last
section to compute [DFT. The phase factor of equation 5.12.2 changes the sign. Hence for
computation of IDFT equation 5.12.2 will be,

e/ PR o pog (Theta) + jsin (Theta) . (5.13.3)

Equation 5.12.3 and equation 5.12.4 are then solved accordingly and the statements of 'C
are modified. Lastly every sample of output sequence should be divided by "N’ to get sequence
x{m). Thus same program can be used to compute DFT and IDFT with manipulating 'signs’.

Such modified 'C" program is given below.,

J/Eile name : 1idft. cpp

fromeo coccocas Radix-2 DIT FFT algorithm to compute IDFT ----c-=c=ccacao -*/
!

! This program implements the radix-2 DIT FFT algorithm for

e the complex valued seguence of length W to compute IDET

o

Iy Inputs : 1. Humber of samples of X(k)

! 2. Values of samples of Xik)

!

! Dutpuks : real and imaginary part of

/i ®inm) .

£

! Azsumptions : This program is for written for

i/ inplace computation. The data storage

i format is given in the discription.

f o o

finclude<stdiop.h>

#include<conio.h>

finclude<math.h>

# define SWAP(a,b) tempr = {a}l; {a) = (b); (b) = tempr;

vold main()

{
float data[2050],real kO, imag_k0,real kl, imag_kl, tempr;
float pi,cosTheta,sinTheta;t,Thata;
unsigned long N,n,m;j.1i,k.;p:
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data[i] = real_kQ; f7 | the newly computed real and
datali+l] = imag_k0; 5 imaginary parts of the
data[i+p] = real kl; FE butterfly are stored in
data[i+p+l] = imag_kl; I place of prevoius values
1 this is "in place computation®
ifin<k)
{ fr
i=1+2; nt#; Ml
t=1tr+ 1; A
Theta = {((2*pi)S{float)pl=t; JF/ | this if-else loop
oy cosTheta = cos (Theta) FA adjusts the
ginTheta = sin(Theta); £l counters and
} else £ phase factors
| £ as required
i= i+ p+2; o in one stage
n=1; t = 0; . L of decimation
Theta = ((2*pi)/(float)p) *t;//| ' '
. - coaTheta = cos (Theta); A
. sinTheta = sin{Theta); FE
: V
i
k=k << 1; // adjust counter for next stage of decimaticn
L
} o
ff===r======= DIT FFT computation completes ——————————————mremm—eeee
ff===m==- Hext part displays computed x{n} on the scregn ===s=ceccceze==

printf ("\nThe seguence x(n) is as follows...\n"); '

printf("\nreal part of x(n) .. imaginacy pact of x(n)™);

forin = 1; n <= N7 n++)

i,

printf{"\n%f “t\t %f",data[2*n-1]/N,data[2*n]/N};

} ff each sample iz divided by N since it is IDFT
I . '
ff = End 0f PrOgTAm ———- - - m oo

Observe that the program given above is exactly similar to that used for computation of
DFT. In the while loop there is for loop. In this loop there are four statements 1o compule
real k0, imag kO and imag k1l In these statements 'signs' of sinTheta are made
opposite to that for DFT.

And lastly while printing, the samples in data are divided by N. These are lhl: only two
chmgesmﬂ:mﬂtwllupmgrmmmlﬂﬂ _

mspugmnmmtmmmdmﬂﬁx{k}uhlnﬂdbymlmrpmgmm The.re:ultsm
presented below.

memmmssssmsss == s sssss==rn=== FESUILE memmermr e e e ———
Radix-2 DIT FFT algorithm to compute IDET

Enter the number of samples in the seguence Xk}, H = 4

Enter the samples of sequence X (k)
real part imaginarcy part
X(0) =60
X(l) = -2 2
X(2) = -2 0
i) ™



Digital Signal Processing 368 DFT, FFT and their Applications

K3} = =2 =2

The sequence x(n) is a5 follows...

real part of x(n) imaginary part of x(n)
O.000000 O.000000
1.000000 =0.000832
2.000000 0.000000
3.000000 0.000832

NN N R FE N T R M S WS MW S W MR MW MR MmN N ST CER MW MR RO PN WM M W RN RSN NN NN RN TN NN NN W S RS S

Observe that the sequence x I{n}z{ﬂ. | 3} is obtained back by the program. This shows
that IDFT can be computed using FFT algorithms.

Note : A single program can be used to compute DFT as well as IDFT. Based on whether
DFT or IDFT, the 'signs' of sinTheta can be changed. This is very easily possible.
5.14 Computation of DFT and IDFT

In this section we will study the computation of DFT and IDFT using their basic
definition. In the previous sections we have seen the computation of DFT and IDFT using FFT
algorithms

5.14.1 Logic for Computation of DFT
The N-point DFT of the sequence x(n) is given as,

-1 )
X{k) = &xiuu”“‘“’” Lk=0,1, .. N-1 -(5.14.1)

=10

We know that ¢ ¥ =cosB - j sin®, Hence equation (5.14.1) becomes,

-G )

The real and imaginary parts of X(k) become,

=l
XReal[k] = E;{n]cm{ﬂ]m -{5.14.2)
n=1{) N
M =
XImag(k] =- E'xmsi.{iﬁ’“ﬂ] .(5.143)
a=0

Here XReal[k] is real part of X(k) and ¥XImag[k] is imaginary part of X(k). In
equation 5.14.2 and equation 5.14.3 x(n) is considered real sequence.

5.14.2 C Program for Computation of DFT

The C program based on logic discussed in previous subsection is given below.
//Eile name ; dft.cpp
¥ e e =t an = Discrete Fourier Transform(DFT) ------—=---—---m- */

L

Iy, Thi= program computes the M point DFT of the segquence x(n)

of length N,
Inputs : 1. Humber of samples of x(n), i.e. ¥
2. Values of samples of x(n)
utputs ;0 M point DET X (k) with its real

real and imaginary parts.
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hi2] =2

h({3] =1

Enter the segquence x(n)
x[0] =1

®[l] = 2

¥[2] = 3

w[3] = 4

The result of convelution is...
y[0] = 14.000000

(1} =-16.000000

y[2] = 14.000000

y[3] = 16.000000

As shown above, the same sequence nf{l-l, 16, 14, 16} is obtained by the program..
T

5.16 Computation of Circular Convolution using DFT and IDFT
We know that circular convolution satisfies the following property from equation 5.3.48,

x(n) N x2(n) 37— X (k) X () . (5.16.1)
or hin) Nx{njti—”:mk}x{n ... (5.16.2)

This means multiplication of two DFTs is equivalent to the circular convolution of their
time domain sequences. This provides another method for computation of circular convolution.
That is, first taken DFTs of two sequences. Then multiply these DFTs on sample to sample
basis i.e.,

¥ik) = H(k)-X(k) - (2.16.3)
Then take IDFT of Y(k) ie.
' ¥in) = IDFT[¥(k))
According to equation 3.11.2, ¥(n) is circular convolution of h(n) and x(n). ie.
¥m) = h(n) N x(n) .. (5.16.4)

5.16.1 Logic for Computation
Let the two DFT pairs be as follows

DFT
hin) N 1T4H{H'

x(n) N hih"-?-ax{t}

And the real and imaginary parts of H(k) X(k) be gi2n as,
Hi{k) = HReal[k] + j HImag[k]
X(k) = ¥Real[k] +j XImag[k]
Then the multiplication of two DFTs will be,
Y(k) = Hik) - X(k)
= (HReal [k] + j HImag([k]] (XReal[k] + j XImag[k])
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The real and imaginary parts of Y(k) are obtained according to eguation 3.16.5 and
equation 5.16.6. Then the inverse DFT of Y(k) is computed according to equation 5.14.5. This
is because sequence Y(n) will be real if h{n) and x(n) are real. The last for loop prints v (n)
on the screen.

To Test the Program :

Let us test this program for the circular convolution of {% L 2,1} and {I+ 2.3, 4L In

example 5.3.5 we have obtained circular convolution of these sequences as {id. 16, 14, lﬁ}.
T

When these sequences are given as input to the program, the results are shown below.
------------------------------- Besults ==——==—ceereccscsss s s ===
Circular Convelution using DFT and IDFT

Enter the value of H = 4
Enter the sequence hin)

hid] = 2
hil] = 1
hi2] = 2
hi3] =1
Enter the sequence xi(n)
x[0] =1
x[1l] = 2
x[2] = 13
x[3] = 4

The circular of cenvoelutian is...
vi0] = 14.00375%8
y(l] = 15.998674
vi2] = 13.996202
vi3] = 16.001299

I T T T T O S O R ey e = < e S - o - S S S S S N S S - - o i e o B n B - = - e i i

These results are same as one we have obtained earlier.

5.17 Computation of Magnitude and Phase Transfer
Function Plots

In this section we will discuss about how to compute magnitude and phase of the transfer
function.
5.17.1 Logic for Computation and Magnitude and Phase

We know that the difference equation 1s given as,

y(n) = =[ay y(n=1)+ay y(n-2)+...+ay y(n —N]l]
+hgxgn)+byxin=1)+..+by_xin-M+1).. (5.17.1)

This difference equation has 'N' numb& of y(n) terms and ‘M’ number of x(n) terms.
Taking z-transform of above equation we get,

Yiz) = —[-::. ¥ (a2t Y (@) a2 Y }’{z}]
+hy X (D 4+b 27 X @+ + by 27" X (2)

¥iz)
X(z)

On rearranging above equation the ratio called system function H (z) becomes,
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Thus wstep=

pi(i.e. p)

=10 is the angle with which 'w is increased to get range of 0 0 &
4q

Thus we get 640 values of |H tm}lmﬂ ZH (w). These values are then displayed on the screen.
5.17.2'C' Program for Magnitude and Phase Transfer Function Plot

The 'C' program based on above logic is given below :

J/Eile pame : magphse.cpp
/* Magnitude and phase transfer function pleots of a difference eguation */

'

Iy This program accepts the coefficients of the difference
i equation and generates the magnitude and phase transfer
i function plots.

i

I The format of the difference eguation is,

Frd yin) = =[al*yin-l}+a2*y(n=2) +ad*y(n=3)+...... .}

i +bl*x (n)+bl*x(n=1)+b2*x (n=2}+.......

i

iy Inputs :1. Mumber of coefficients of 2(n) i.e. M.

Il 2. Values of coefficients of xi(n),

i i.e. b0,bl,b2,....8kc.
/i 3. Humber of coefficients of yin) i.e. H.

A 4. Values of coafficients of yi(n},

H i.e. al,a2,a3,....etc.
/i

/i QJutputs : Magnitude and phase transfer function

i plot Hie*jw) for w =0 to pi.

i

f/ Assumptions : This program is written for up to ten coefficients.
J e e e e et et e e e e e e e
tinclude<stdio.h>

finclude<conio.h>

finclude<math.h>

#include<graphics.h>

volid main()

{

float RealNum, Imagtum, RealDean, ImagDen;
float mag[640] ,phase[640],pl,w,wStep;

float static afl0),b[10), yMag, yFhase;

int M, N, i, k,qd,gm;

clescel);
printf(™ “nThis program displays the magnitude and phasea®
" transfer function plets'\nfrom given coefficients of®
* difference eguation \nin"});
printf ("\nenter the number of coefficients af xin), M= ");
scanf ("kd", &M} ;
for(i = 0; i « M; i++)
{ ff coefficients of x(n)
printf ("b%d =~ ",1};
scanf ("%E£", &ab[i] )¢ Jb0bl,b2, . ...
}
printf ("wnenter the number of coafficients of vin), H = ")
scanf ("&d", &M} ;
ald] = 1.0;
for(i = 1; i <= H; i++)
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[ ff coefficients of yin)
printf ("a%d = ", i);
scanf ("LE", ealil): fflal,a2, a3, .....
¥
pi = 22.0/7.0; /f walue of pi
wStep = pi/ed0.0; /S range of w = 0 to pi divided into small
) steps of pi/640 for displaying on Screen.
for(k = 0; k < 640; k++)
[ /f this loop computes magnitude and phase at &40 points

rF . in the range of w = 0 to pi.
W= w + wSitep; // steps by which w is increased.
RealWum = b(0] ; // real part of numerator
Imaghum = 0; Sf imaginary part of numerator
for{i = 1; 1 < M; i++) // this loop computes total real &
[ /7 imaginary parts of numerator seperately.

FealMum = BealMum + b[i] *cos{i*w); //total real part.
Imaghum = Imaghum + bB[i]*=in{i*w); /[/Stotal imaginary part.

b
Imagium = Imaghum *= (-1.0); // change sign of imaginary pazrt.

RealDen = af0]; /! real part of denominator

ImagDen = §; foimaginary part of denominator
for(i = 1; i == M; i++}// this loocp computes total real &

[ /7 | imaginary parts of denominator seperately.

Feallen = Reallen + ali] *cos{i*w)l; J/ total real part
Imaghen = Imaglen + a[i]*sin{i*w); // total imaginary part
}
ImagDen = ImagDenm * (=1.0); 7/ change sign of imaginary part
mag (k] = sgrt(Reallum*Reallum + ImagNum®* ImagMum) /
sqrt (RealDen*RealDen + ImagDen*ImagDen) ;
Jfcalculation of magnitude of transfer function
phase[k] = atan2 {ImagNum, RealNum) - atanZ (ImagDen,RealDen);
} fifcaleulation of phase of transfer function

// Rext part of program displays the magnitude & phase on the screan
rr which is calculated at 640 points by previous "for' loop

detectgraph (&gd, &gm) ; f/ detect graphics mode & graphics driwver
initgraph (&gd, &gm, "™} ; f/ initialize screen in graphics mode

setlinestyle (DOTTED LIME,1,1); /f dotted line style for x-axis

line (0,250,640, 250} ff m=axis line for magnitude
line(0,350,640,350); ff ®x=axis line for phase )
for{k = 07 k < 640; k+4) JF this loop puts 640 pixels of

Iy magnitude and phase on the screen

yMag = 250 - mag(k]*25; /S magnitude scaled for proper display
putpixel (k, yMag,WHITE); // put pixel of magnitude on the screen

yPhase = 350 - phase[k]*50; ff scaling of phase
putpixel (k, yPhase,WHITE) ; Ff put pixel of phase
}
outtextxy (500, 200, "Magnitude plet™}; // label of magnitude
outtextxy (500, 450, "Phase plot™); // label of phase
getchi); f/ wait for chservation
closegraph(); // close graphics mode
}
fl=mm— e e e e socscs== End Of ProgQram ——==c=c-sccscsccccsccsscnme==

As shown in above program the first for loop is used to enter the coefficients of x (n)
The second for loop is used to enter coefficients of y(n). The statement
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wstep = pi/640.0;
Computes the steps in which '« is incremented in the range of 0 to = The next, ie. 3™
for loop computes magnitude and phase at 640 discrete values in the range of 0 to  In this
for loop, there are two statements :

ImagNum = ImagNum = (=1.0)

and Imagden = ImagDen = (-1.0);

These statements absorb the negative sign of ImagNum and ImagDen in equation 5.17.8.

The statement,

RealNum = RealNum + b[i] * cos (i * w);

implements equation 5.17.1. Similarly other equations are also implemented.

The arrays mag[k] stores magnitude of H (w) of 640 points and phase [k] stores phase
of H (w) of 640 poins.

The last part of the program then displays the samples of mag (k] and phase[k] amrays
on the screen after proper scaling.

An example and resalts :

Consider the example of

M = 1 with b0 = 1 and

N=1 with al=-0.9 and a; =1 internally.

The difference equation of equation 5.17.1 becomes,

Fin) = —E—ﬂ.ﬂ}"{n—lj] +x(n)
Hence the system function H (z) becomes,
y(z) = 09z7 y(2)+ X (2)
_Yi 1
X() 1-0977

Hence transfer function H {w) becomes,

Hw) = H{E}{z- o

H(w) = —— o (5.17.11)

1=-09e"
The calculation of magnitude and phase of H (w) of above equation is left as an exercise
to the readers. The resulis of the above 'C' program for this difference equation are presented
next.

Hz)

This program displays the magnitude and phase transfer function plots
from given coefficients of difference eguation

enter the number of coefficients of x(n), M= 1
bl = 1

enter the number of coefficients of yin), H =1
al = =0.9

i v - . T - - e - S - S G - S A S 20 s - S N - S S - S - S - e - e S T i O -
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7.
8.

With the help of N = 8, explain radix-2 DIF FFT algorithm for computation of DFT.
Write short notes on the following :

(i) ,Goertzel algorithm.

{ii) Computational complexity of FFT algorithms.

{ii1) In place computations.

{iv) Butterfly operation

{v) Overlap-save and overlap-add algorithms.

{vi) Use of DFT for power spectrum estimation,

(vii) Chirp-z transform Algorithm.

Explain the relationships between z-transform and DFT and fourier transform.

Unsolved Examples

Compute N-point DFT of following signals :
(i) ;[n]=ﬁ{n—nu}
(Ans. : X (k) =e/2=knelN)

N
0gns—-1
L n >

(ii} x(n)=
0, %snsﬂ-l

1-wk

Ans. : X(k) = 1-(-9" ]
N

Compute the circular convolution of the following sequences.
() x(n)={LLLL0000}

x:{n}::ﬁi%n. 0€n<7

(Ans. : {125, 255, 255, 125, 0.25, -106, *inn. 0.25})

(i) x(n) ={L353
hin)={23 L1
(An:.: 119,17, 23.!!})

aao



Chapter 6
FILTER DESIGN

6.1 Introduction

The digital filters are the discrete time systems used mainly for filtering of amays. The
arrays or sequences are obtained by sampling the input analog signals. The digital filters
perform the frequency related operations such as low pass, high pass, band reject (notch),
bandpass and all pass etc. The design specifications include cut off frequency, sampling
frequency of input signal, pass band vanation, stop band attenuation, approximation, type of
filter and realization form etc. Digital filters can be realized through hardware or software.
Actually speaking, the software digital filters need digital hardware fer their operation. '

6.2 Difference Between Analog Filters and Dlgitai Filters

All of us are familiar with analog filters that uses inductors, capacitors and resistors.

6.2.1 An Example of Analog Low Pass Filter

Consider the LC lowpass filter shown in Fig. 6.2.1. This is a very standa:d and commonly
used filter to remove ripple and noise in the input signal.

v Input signal Analog Lowpass filler v Cwiput signal
in - - out
L f 9

50 + O i T o+ 5.0
: DC level + nolse L DC level

) without noisa

Vin —|-E Vout
il it —o o- -\

Fig. 6.2.1 Analog lowpass filter

In the above figure observe that input signal is noisy DC level of 5 volts. The noise is
removed by the LC filter and the output signal is pure DC level of 5 volis. The noise is high
frequency signal compared to DC level. The lowpass filter removes this noise and passes only
DC level. This is how the simple LC lowpass filter works.

6.2.2 An Example of Digital Lowpass Filter

The digital filters do not use resistance capacitors or inductors. We know that the discrete
time systems are represented by the difference equation. Similarly a digital filter is also
represented by the difference eguation. Consider a simple lowpass filter whose difference
equation is given as,

y(n) =%x{n}+%x{n—l} . (6:2.1)

(405)
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Fig. 6.2.2 shows the implementation of this digital lowpass filter. The noisy analog 5V
signal is sampled and we get x (n). Observe that the samples of x (n) vary above and below
5V level. We have to remove this noise and all the samples at the output should be near 5V
level. The noisy x (n) is given to the digital lowpass filter as shown in figure. Observe that the

digital lowpass filter is represented by the difference equation }r{n]=%x{n}+%x{n—1}. The

digital filter then computes various values of y(n) according to this difference equation. The
above figure shows the computation of first few samples of y(n). For initial calculation we
need x (=1). It is assumed to be 5.8. Observe the values of y(n) in figure. The noise in these
samples is reduced compared to x (n). This is how digital filter works.

Maisy input Fillered output
x(n) samples y(n) samples
53 5.15
[ =] 5.15
2 s 3 ,ﬁgjﬂ Digital filter 519 % 9 0 4055
yin) = 3xin) + 1x(n-1) ]
of 1 2 3 4 5 4 o1 2z 3 4 5 "
Fig. 6.2.2 Dlﬂ_tll lowpass filter
Assume x(=1) =5

Then output samples y(n) for various values of ‘n' can be obtained as follows by using
1 l
nl=—x(n)+=x(n=1)
y(n) > ( 5 (

1 1 1 1
= — —x(-1)==(52)+-=(5)=51
y(0) 11(0}+21‘{ ) 1[ ]+1(}

(1) =-%;u:.+%;m;=%t5}+%:511=51

1 1 1 1
2) =—x(2)+=x(l)==(53)+=(5)=515
¥(2) z#[l-i'z,t{) 2( ]'+1l:]

1 | 1 1
N =—x(N+—x(2)==(5)+=(53)=515
y(3) 1_.::[]|+2J'r{} I{HE{ )

1 1 1 1 e
vi(4) = Exi4:-+5.r(3:|-5(4.9;+2{51-¢95

y(5) = %3[5]+%:{4]=%{ﬂ1+%[19]=5 .. and 30 0.

6.2.3 Implementation of Digital Filter

The difference equation of the digital filter described above can be implemented in
software like ‘C' or assembly language. Basically such languages are complied and an
executable code for the processor is prepared. This code runs on the memory, data bus, shift
registers, counters, ALU etc to give required output. Thus digital filter is implemented by the
digital hardware such as flipflops, counters, shift registers, ALU of the general purpose
processor. The software code simply manipulates the operations of these digital circuits.
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The digital filter can also be implemented by the dedicated hardware. Such hardware is
basically a digital circuit consisting of counters, shift registers, flipflops, ALU etc. But the
dedicated hardware c¢an perform only one type of filiering operation, since it cannol be
changed.

When the digital filters are written in softwares like 'C' or assembly, they are highly
flexible. The single program is capable of performing different filtering operations. The major
advantage is that these all programs use the same digital hardware. For example different
programs in “C’ can be written for lowpass, bandpass, highpass, notch etc filters. And all these
Programs run On same computer.

Thus digital filters have large number of advantages over analog filters. The differences
will be more clear when we will study design and implementation of digital filters.

6.2.4 Comparison of Analog and Digital Filters

Following Table 6.2.1 presents some of the differences (advantages/disadvantages) between
analog and digital filters.

Table 6.2.1 Comparison/advantages and
disadvantages of analog and digital filters

Sr.Neo. Parameter Analog filter Digital filter
1. | Input/output signals Analog _Digital (discrete time sequences)
2. | Composition Lumped elements such as R, | Software + digital hardware
L and C or analog IC,
3. | Filter representation | In terms of system By difference equation
COmponents
4. | Flexibility Not flexible Highly flexible
5. | Portability Mot easily portable Portable
6. | Design objective Specifications to values of | Specifications to difference
and result R, L and C components equation
7. | Environmental Environmental parameters Negligible effect of
effects affects the performance environmental parameters
8. | Interference noise Maximum effect Minimum/negligible effect
and other effects
9. | Storage/maintenance | Difficult storage and Easier storage and maintenance
failure maintenance and higher and reduced failure rate
failure rate

6.3 Types of Digital Filters

We are introduced with the digital filters. Now let us see the types of digital filters. The
digital filters are of two types :
(i) Finite Impulse Response (FIR) filters.
and (ii) Infinite Impulse Response (IIR) filters.
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These two types of FIR and IIR filters we have introduced earlier in chapter-2. Basically
these are Linear Time Invariant (LTI) systems which are characterized by unit sample
response. The FIR system has finite duration unit sample response. i.e.,

hin) =0 for n<Oand n= M . (6.3.1)

This unit sample response exists only for the duration from 0 to M -1 Hence this is FIR
system.

The IIR system has infinite duration unit sample response. i.e.,

hin) =0 for n<0

This unit sample response exists for the duration from 0 to «. Hence this is [IR system.

We have also seen earlier that FIR and IIR systems can be best described by difference
equations. IIR systems can be easily described by recursive systems. FIR systems are
nonrecursive. Readers are advised to revise all these concepts in chapter-2. Thus output of FIR
filter depends only upon present and past inputs since it is nonrecursive, i.e. it does nol use
feedback. The 1IR filters are recursive ie. they use feedback. Hence output of IIR filter
depends upon present input as well as past inputs and outputs.

We know that the difference equation of the LTI system is given as,

yim) =—£ ag yin—k)+ ib*:{_"_k} . (6.3.2)
k 'I k o ‘ﬂ
In the above equation the terms under first summation are past outputs, and terms under
second summation are present and past inputs. Hence the above difference equation represents
[IR filter. For the FIR filter the first summation will be absent and the difference egquation
becomes,

yin) = ) by x(n-k) . (6.3.3)
k=10

We know that output of the LTI system is given by convolution as,
v = S hxn-k)

k=-m

For the FIR filter unit sample response h (k) exists for the duration from 0 to M -1 as we
have seen in equation 6.3.1. Hence output of FIR filter becomes,

-1
yin) = .i h(k)x(n=k) - (6.3.4)
k=0
Here observe that above equation as well as equation 6.3.3 represent the output of FIR
filter. Hence unit sample response of FIR filter is given as,
hik) = by - (6.3.5)
This is unit sample response of FIR filter can be directly obtained in terms of coefficients

of difference equation. But there is no such easy and direct relation for unit sample response
of IIR filter.

6.3.1 An Example of FIR Filter

To clear the difference between FIR and IIR filters, let us consider their examples.
Actually we have seen an example of FIR filier as lowpass filter earlier, consider again the
same example. We know that difference equation of the FIR filter is given by equation 6.3.3
as,
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yin) = by x(n-k)
k=0
If we select by =%and by =-% , then above equation becomes,

yin) = %Ifn}wéx{n—l} .. (6.3.6)

This is the digital lowpass filler we have considered in equation 6.2.]1 earlier. From
equation 6.3.5 we have the unit sample response of this filter as,
hik) =by, k=01

h(0) =bu=%
=1

and -ﬁ“} = bl

. Unit sample response hin) = {IE]E}

This is the unit sample response of the digital lowpass filter we have considered. Observe
that the unit sample response is finite in duration i.e. only two samples. Hence this is FIR
filter.

6.3.2 An Example of IIR Filter
MNow let us consider a simplest example of IR filter. We know that [IR filters are

described by the difference eguation given by equation 6.3.2 as,
yi(n) == i ag vin—=k)+ g: by x(n=k)
E=0

k=1

Here let a; =—land by =1 and rest of the coefficients are zero, then above equation
becomes,

y(n) =y(n=1)+x(n) . (637

To show that this equation really represenis IIR filter, we will obtain its unit sample
response. Taking z-transform of above equation we get,
Y(2) =27 V(@) +X (D)

I"{z}[l —z"] =X (2)

¥iz) - 1
X(z) 1-77!
We know that ;EE:; is the system function H (z). i.e.,
Fa
H(z) = —

1-41:'1

The inverse z-transform of system function H(z) is called unit sample response h(n).
Hence taking inverse z-transform of above equation from standard z-transform tables we get,
hi{n) = u(n) Le. unit step function .. (6.3.8)
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6.5 Design of IR Filters from Analog Filters

The analog filter design theory is well developed. Hence IR digital filters are designed
from analog filters. The analog filter is described by following system function.

Py s
H,(s) = 26 _ A=0 . (6.5.1)
Als) i k
i ] 13
k=0 .
The system function H,(s) can also be obtained from impulse response h{t), i.e.,
H,(s) = j&fr]e'"rﬂ* . (6.5.2)

-

Thus laplace transform of hit) gives system function. The analog filter can also be
described by a linear constant coefficient differential equation i.e.,

atvin d* x(r)
o = >Pp ... (6.5.3)
1%1 ' dr* ;gn . de*®

Here =x(t) is input to the filter and
y(t) is the output of the filter.

Normally the design of IIR digital filter is started from specifications of analog filier. The
system function of the analog filter is then obtained. The system function of the digital filter is
then obtained through some transformation. We know that the analog filter is stable if its poles
fall in the left half of the s-plane. Hence the transformation techniques should have following
desirable properties :

1) The jf1 axis of s-plane should map on the unit circle in the z-plane. This provides the
direct relationship between the frequencies in s-and z-plane.
2) The left half plane of s-plane should be mapped inside of the unit circle in z-plane.

Because of this, the stable analog filter is converted to a stable digital filter.

Further, we will consider few important techniques for design of digital filters from analog
filters

6.5.1 IR Filter Design by Approximation of Derivatives
In this method, the differential equation of analog filter is approximated by an equivalent
difference equation of the digital filer. For the derivative 2% ot t = nT, following

dr
substitution is made,
ﬂ - WnT)=-¥inT -T)
de f=nT T
Here T is the sampling interval and y(n) = y(nT), hence above equation can be writte~ as,
dy(t) _ yn)-yn-1) e
dt T

The system function of the differentiator having output E‘i—” is,
H(s) = s .. (6.5.5)
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The system function of the digital which produces output J{"}'_i"j"'“ is

1-z7"
= . (6,56
H(z) T ( )

Thus the analog domain to digital domain transformation can be obtained (from eguation
6.5.4, equation 6.5.5 and equation 6.5.6)as

-l
g =) T‘ o (65T
Similarly it can be shown that,
T k
-1
sk =[I‘; ] . (6.5.8)

Here 'k’ represents the order of the derivative. Thus the system function of the digital filter
can be obtained from the system function of the analog filter by approximation of derivatives
as follows.

H(z) = H.I.r'_lL_l-z" .. (6.5.9)
T
From equation 6.5.7 we have,
1
= — ... (6.5.10
: 1-sT ( )

We know that s =g + j (1, hence above equation becomes,
1

e+ T
l —rwrer

1-oT - jQT
- l-oT + QT

(1-aT)? +(Qn)?

l-aT : Qr

= 'I'J

(1-eT)? +(QT)* ~ (1-oT)* +(QT)?

Let us see how j{l axis is mapped in z-plane. For this, substitute o =0 in above equation.
Hence we get,

- (6.3.11)

ze—1 4 T .. (65.12)

1+(Qn? T 1+Qr)?
The above equation shows that complete f{) axis (- fo + =) is mapped on the circle of

radivs 1/2 and center at z =-;1. This is shown in Fig. 6.5.1. This circle is inside the unit circle.

From equation 6.5.11 it can be shown that left hand plane of j{) axis maps inside
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circle. This is shown in Fig. 6.5.1. Thus a stable analog filter is converted to stable digital
filter.

Ex. 6.5.1 Obtain the system function of the digital filter by approximation of derivatives if the
system function of the analog filter is as follows :
1
H (s) =
‘ (s +01)* +9
Sol. : The derivative approximation is obtained by putting,
1-z7!
T

... (6.5.13)

Hence equation 6.5.13 becomes,
H(z) = H,(s)| 1!
T

T!

(1+02T +9.01T2%)
| Al+01T) Ly 1 22
1+02T +901T2 1+ 02T +901T2
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_ This is the required system function.
6.5.2 lIR Filter Design by Impulse Invariance

- Let the impulse responses of the analog filter be h (r). Then the unit sample response of
“the corresponding digital filter is obtained by uniformly sampling the impulse response of the
analog filter. We know that sampled signal is obtained by putting ¢ =nT i.e.,
hin) = hy(nT), n=0,12... e (6:5.14)
Here h (n) is the unit sample response of digital filier and T is the sampling interval.
Let the system function of the analog filter be denoted as M (s). Let us assume that the
poles of analog filter are distinct. Then its partial fraction expansion can be written as,

H,(s) = i il .. (6.5.15)
k=1 ¥~ Py
Here {p,} are the poles of the analog filter and {c,} are the coefficients of partial
fraction expansion. The impulse response of the analog filier i.e. h,(r} can be obtained by
taking inverse laplace transform of the system function M (s) given by equation 6.5.13. From
the standard relations of laplace transform we can obtain h,(r) from equation 6.5.15 as,

ho(1) = i cy ek’ 120 .. (6.5.16)
k=1
The unit sample response of the digital filter is obtained by uniform sampling of h,(r).
LE., )
hin) = hy(0), _ . =hy(nT)
=Y ¢ e . (65.17T)
k=]
Now the system function of the IIR filter can be obtained by taking z-transform of h(n).
i.e.,
. Hiz) = E h(n)z™™ By definition of z-transform
n=0
) i
=2 |2 e |
n=0 |k=1I
3 T _-17"
= i cy E ok 7
k=1 m= [ ]
We know that,
i at =]L using thjs standard relation we can write above equation of H(z) as,
n=0 —a
H@ = S et .. (65.18)
kwl 1=ePk" 27 :

Thus we have obtained the transformation of analog system function [equation 6.5.15] o
digital system function [equation 6.5.18]. i.e.,
1 - 1
§ =P 1— T 271

o (6.5.19)
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We have that the discrete time system is stable if its poles lie inside the unit-circle.
The analog system is stable if its poles lie in left side plane of j€) axis. Since-left side plane
of analog system is mapped inside the unit circle, a stable analu:g_sfﬂirii is converted into
stable digital system. The entire j{} axis is mapped on the unit circle. Hence this mapping is.
not one to one. We know that range of ‘o is —n £ @< n Hence comresponding range of '}’ is,

w =0T
&

-nswsm comesponds to -t TS nie -T—rfﬂﬂﬂg.

Thus —— <0 <= maps on ~NSms T
T T

We know that m< @< 3ris same a8 -1 < @< 7 on the unit circle.

RS w< 3n corresponds o x0T <3nie. ?55!53—“ :

T
Thus gﬂﬂﬂgmﬂps on -n< @< n., This shows that the mapping of j () axis is many to

(2k =1)

one on unit circle. The segments — x<Q < ﬂ*;l}n

of j{1 axis are all mapped on the
unit circle —n<£ @< n. This effect takes place because of sampling.

The following transformations can be wseful in designing IIR filters by using impulse
invariant method.

-1 m=1 m—1
1 _F( )"t 1 .. (6.5.24)
Gy (D dpp 1T
5+a 1-eT {::'mr bT] -‘:_] (6.5.25)
(s+a)’ +62  1=2€ 7 (cos bT) ™" 472 7
=aT ; . =1
b & (sin bT) z e (6.5.26)

_}
(s +a}=+b2 1-2e T (cos bT) 271 4 ¢~ 20T ;72

Note that zeros of the system are not mapped according to the transformation discussed
here.

Ex. 6.5.12 The system function of the analog filter is given as,
s+ 01
{s +l::IIJ:|-I +9
Obtain the system function of the IR digital filter by using impulse invariance
method.
Sol. : The denominator of H,(s) has roots at
P u—m'ﬁj"l p2="'ﬂ.l—j‘3
s+01
(s+01-73)(s+01+;3)

Let us expand H,(s) is partial fractions,

H,(s) =

Hals) =
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Hyls) = s+01-43 ¥ .r+ll1-+_j3 - (6.5.27)
Values of A; and A, can be obtained as follows :
A ={I+D]—j3}.H¢{s}i"_M+”
- s+01 |
s+'I1]+j3J__m”.3
=01+j3+01 1
T+ j3+00443 2
Ay ={s+|::uﬂ'e.}ul.'ﬂ{:-)L__M_J,3
o s+0d \
-.s+ﬂ_1—_j3;__u_l__”
_—01-j3+01 1
T -01-j3+01-j3 2
Hence equation 6.5.27 becomes,
| 1 1
H(s) = —2— 4 —2 .. (6.5.28)

s+01-j3 s+01+;3
We know that impulse invariance transformation 15 given by equation 6.5.19 as,

1 1
_'.

5 =P 1- Tz
Using this relation we can obtain the system function for digital filter from equation 6.5.28

as,
1 1
H(z) = 4 + .
1= MIT+i3T -1 I_E—EHT?_.IJ-TI*I

This system function can be simplified further as,
1 -(t_ﬂ" T cos JT) 2!

1- (It'u'l'r cos 3T) gl g 02T -

Observe that this equation can also be obtained using equation 6.5.25,

Frequency response of digital filter designed using impulse invariance :

Always we are required to find frequency response of digital filter. When the digital filter
is designed using impulse invariance its frequency response is related to that of analog filter by
following relation,

Hiz) =

H(w) = %H, (;?J —rSesn .. (6.5.29)

The proof of this relation is not presented here just to avoid complex mathematics.
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Ex653 IfH, (s)= find the corresponding H(z) using impulse invariance

(s+D(s+2)"
method for sampling frequency of 5 samples/sec. [Dec-88]
Sol. : Let us first expand H, (5) in partial fractions. i.e.,
H S L
a0 = T2
1
cp =(s+1)H, (s =
1 Hjl—] I"'I::_l
= I =]
-1+2
1
cq =(s+2) H, (s -
: b2 27

1

- - ]

241
Hence H, (s) becomes,
1 1
H, (5) =— - .. (6.5.30
a(®) s+1 542 ( )
It is given that sampling frequency F, =5 Hz

.. Sampling period T = %:%:&1

¥
From equation 6.6.6, impulse invariance transformation is given as,

1 1
=%
=P |- efdT g1
Now let us apply this transformation to individual terms of H, (5) of equation 6.5.30 i.e.,
1 1
— . Here =-]
_1I-_+| I_E—Ihl:l.lz—l. F]
1 1
and, - . Here ==1
$+2 |- 2%02 I P2
Hence H (z) of digital filter becomes,
1 1
H(z) = [_ e 1*02 I T e 2r02 =
1 1
H(z) = -
e 02 1 g0 -l
1 1

1-0818z7"  1-067 '
On simplifying this equation we get,
0148 z
Hiz) = <
z° =148z + (0548
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6.5.3 IIR Filter Design by Bilinear Transformation

In the impulse invariance method the impulse response of analog filter is sampled. We
know that whenever sampling takes place problems due to aliasing occur. This aliasing takes
place in frequency domain. Hence to design higher frequency filters using impulse invariance,
sampling frequencies should be high. This limits the use of impulse invariance method to only
low pass (or lower frequencies) type of filters.

Hence we will discuss a different type of mapping from analog 1o digital domain which
overcomes the limitations of impulse invariance method. It is called bilinear transformation and

given as
-1
s = % ["3 I] ... (6.5.31)
1+z2°
The above equation can also be written as,
5 = % [%] ... (6.532)
I+

We know that 5 =g + j{2 and polar from of 'z’ is z=r & “. Putting this value of ‘z’ in
above equation we get, .
; =Erf‘"—l
T rel®™ 41
We know that ¢/ ™ = cos @+ j sin @, hence above equation becomes,
_ 2 r(cosw+ jsinw) -1
-;-rl[cﬂ.rm+jsmm}+1

Separting the real and imaginary parts of this equation we get,

2 "
s=2l Ll 4 _f”‘"“’ .. (6.533)
Tll4r®+2rcos®  1+r° +2Zrcos

We know that s =o + j{). Comparing with above equation, we gel the values of o and ()
as follows : .

2 _
_— 1’ L .. [6.5.34)
T {+r*+Xcosw
and al, S¥m .. (6.5.35)

T 14ri +2rcosw

From equation 6.5.34 we have following :

(i Ifr>1, thena>0

(i) fr<l, then o< (

(iii) If r =1, then o =0

The first statement indicates that the right hand side of s-plane (i.e. o> 0) maps outside of
the-unit circle (i.e. r>1).

The second statement indicates that the left hand side of s-plane (i.e. o< () maps inside of
the unit circle (i.e. r<l).
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The third statement indicates that the j{) axis in s-plane (i.e. @ =0) maps on the unit
circle (i.e. r =1).

This mapping is similar to that of impulse invariance method shown in Fig. 6.5.2. But in
impulse invariance the mapping was valid only for poles. But bilinear transform maps poles as
well as zeros. The mapping shows that a stable analog filter 15 converted to stable digital filter.

Now let us see how the imaginary axis j{2 is mapped on unit circle. Equation 6.5.35 gives
relationship betwesn Qand @ ie.,

2 2r sin o

l == -
Tl4r* +Zrcosw

If we want the relationship of j{} axis in s-plane (i.e. o =0) to unit circle in z-plane
(i.e. r =1) we have to put r =1 in above equation. Then we get,
Q = 2 2sinw
T1l+l+2cosw

25in ® cos @
=E sine 2 snicasi
T l4cosay T 2:&529
2
2 w
= Ztan = .. (6.5.36
T 2 )
or @ = 2man~! 2T .. (6.5.37)

This equation shows that the entire range of '}’ maps only once in ~-r<w@<m This
mapping is highly nonlinear. Fig. 6.5.3 shows this mapping.

ml.'ifl.u'l-1 %T

=0T

Fig. 6.5.3 Mapping between '(}' and '« in bilinear transformation

Observe the nonlineanty in the relationship between "w and’')'. Tt is called frequency
warping.
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Iyl

1.0

— [Passband ——ste— Slopband —

o] , -
Fig. 6.6.1 Magnitude squared frequency response of ideal lowpass filter
Here we will discuss butterworth filter approximation in more details.
6.6.2 Butterworth Filter Approximation
The magnitude squared frequency response of the butterworth filter (lowpass) is given as,

H, @) = —_— .. (6.6.1)

fa V"
1+ ﬂ]
\Q,

Here N is the order of the filter and 1. is =3 dB cutoff or critical frequency. The above
equation is also given as,

M, @) = ' -~ . (662)
“a)
HereﬂF is the passband edge frequency and

To determine poles of H, (5) :

At 5 = j{), magnitude of H (s)and H(-s) is same, i.e.,
H,(s)-H,(-5) -|H L’_ﬂﬂ |H {ﬂj

|H Eﬂ! - (6.6.3)
We can write equation 6.6.1 as,

- is the bandedge value of |H, ().
1+e

H, @) = —— ... (6.64)

N
'L
1+ | —
Q.
Ats=j0), 0% =-5%, Hence putting this value in above equation and from equation 6.6.3

We can wrile,
H, (5)-Hy{-3) & ———t . (6.6.5)




_l’ —
_2 = (—]}H vew (ﬁ-’ﬁ-ﬁ}

Let us consider ¢/ ***V" for k=0,1,... N -1
AR _ s (2k +1) 4 jsin(2k +1)
Since (2k + 1) m= 1 3Im 5w, ... etc, then above equation becomes,
elfkel)x ==14+j0 for k=0L2N-1
= -1 always for k=012 ...N -1
Putting for (1) from above equation in equation 6.6.6 we get,

2 1
:I:—jz[r”z"*”"]ﬂ for k=0L2..N-I

L

= g+ DN Ro012 ... N-1
EI - __ni c;{il-ﬁl]‘ﬂ” . {ﬁ.ﬁ.?}

Taking square root of both sides we get poles of equation 6.6.5. i.e.,
1

= +,(-1)-02, ,[Ejtlk-# IynfN ]5

w=hnuwthmnf-_l-j.hmu¢w¢cmwﬁt¢ubuv¢¢qumiunas.
py =10, TN fr b o01L2,.N-1 (6.6.8)

J
Consider the value of ¢ 2 ie.,

L.
g 2

2
=D+ jl=j always.

mo., . W
=I.'.'ﬂ.'i""2'+jﬂ!'l'-'

j=
Hence putting for j= ¢ 2 in equation 6.6.8 we get,
; T
pe =10, E-’i 2k + Nim/2N
;[E-.-”“ |.]-1'I:]
—40_ g L2 N

‘—"iﬂc EJ'IH!- 2k + /2N

k=0L2..N-1 (669

This equation gives the pole position of H, (s)- H, (-s). For the filter to be stable we
have to consider the poles left hand side of j{) axis in s-plane. From above equation we
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Here values of £2 , and Q2 are determined from , and @, as follows :
(i) For impulse invariance method (see equation 6.5.23)

o :
] =— o (6.6.12
T . )
(ii) For bilinear transformation (see equation 6.5.36)
Oalm® . (6.6.13)
T 2

The butterworth fillers are monotonic. Hence in equation 6.6.11 observe that if
a {!'1]| 2A, at Q=0 then automatically the first condition of equation 6.6.11 is satisfied,
nce we can write equation 6.6.11 as,

Ha Q) 2 A, for Q=Q,
and |H, () = A, for 0,20
MNow let us consider the squared magnitude response of butterworth filters which is given

by equation 6.6.1 as,
|H 4 {ﬂ)|1 = !

Q 2N
1+ —
ﬂﬂ-’

Hence according to the conditions of equation 6.6.14 above equation can be written as
follows : ’
1

N
L
1+ [_._P]
£,

iN
1+ [&]
nll"

The above two equations can be written as follows :
'y 2N
o o

o (6.6.14)

2 Ag By putting =0 , in first condition of equation 6.6.14 and

< AZ By putting Q2 =02, in second condition of eguation 6.6.14

2
L Ap
N
and 21 .1
Q. Al

We need values of ‘N’ and '£2_' to determine order and poles of analog filter. Hence ‘N
and "'£1_." can be obtained from above equations by considering equalities. i.e.,

IN
[ﬂ_] _
0 ]
F AF

2N
and & = L.—.[
0, ,43

. . (6.6.15)

Taking the ratio of second equation to first in above equations we get,
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If A, and A, are given in dB, then above values are given as,
i

g = (m“”“"’"’ -1]3
- .. (6.6.24)

I
and 5 = (muu,ds _1)5

Similarly order ‘N’ can be given in terms of eand &. i.e. from equation 6.6.23 and equation
6.0.16 we get,

log (6
s (3/¢) ... (6.6.25)

These are the various equations which can be used to determine order ‘N°. Fig. 6.6.3
illustrates various parameters discussed in these equations.

2
[H{C2)]
1 Monotonically decreasing butterworth filter characteristic
1.0 N
,pl:. LI S—— +— Passband edge value of |H(q)|*
1+
-1 . o
2
Stopband edge value
2
| af [H{)|
a2 =l e SISO FEON——. — l‘ ......
148 | :
| i . {1
i} 2 fTic : fr by
Passband Coutaff Stopband
edge frequency edge
frequency frequency

Fig. 6.6.3 Various frequencies and attenuations in filter characteristics
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Ex.6.6.1' Design a discrete time lowpass filter using butterworth approximation by impulse
invariance and realize the filter using parallel/cascade structure. The response is

shown in Fig. 6.6.4 (a). [Dec-99]
IH(e™)
1
0.89125 i
§
i
i
i
]
¥
i
i
0.17783 —E——-—
o 0.2=  03= ": = -

Fig. 6.6.4 (a) Specification of filter for example 6.6.1

Sol. : To identify specifications of given digital filter :
The given specifications in Fig. 6.6.4 (a) are little difficult to understand. It is more clearly
shown in Fig. 6.6.4 (b) below :

HEe™)| Desired characteristic
9 . ;'Ir /——-Trans.iﬁun band
0.89125
+———— Passbang —————» +—— Stopband ———
L I - o s
0 0.2r  03n i ® -

Fig. 6.6.4 (b) Specifications with desired characteristic

The above hgure shows the desired lowpass filter charactenstic passing through given
specifications. These specifications are given for discrete time (i.e. digital) filter. Actually

|H(g—"“] is |H (w)| i.e. magnitude of digital filter. The specifications of Fig. 6.6.4 (b) can be
expressed mathematically as follows :
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089125 < |H (w) < 1 for 0€w<02n } 6626

|H (w) < 017783 for 03m<w<nm

To convert specifications to equivalent analog filter :

In designing digital filter we need system function of analog filter. To obtain the system
function of analog filter i.e. H, (s) we have to first convert the given specifications of digital
filter to analog filter. Here we are using impulse invariance method. In this method we know
that analog and discrete time frequencies are related by equation 6.5.23 as,

@ =0T
Hence the specifications of equation 6.6.26 can be writien as,

089125 ElH{ﬂ)| =1 for 0=QT=<02=n
and M ()] < 0.17783 for 03x<QTsx
The above two equations can be written as,

089125 < |.H{n}j <1 for 00 5%

and [H(Q) < 017783 for ﬂa_f-"gns;

e (606.27)

These are the specifications of equivalent analog filter.

To determine order of the filter ;

Compare the specifications of equation 6.6.27 with those of 6.6.11. Hence we get,
A, =089125, Q, =%

LR

T

. (6.6.28)
and A,=017783, Q,

Hence order of the filter is given by equation 6.6.16 as,

)]

Putting various values from equation 6.6.28 in above equation we get,

1 (cu '.'733) ( 039115}
N=3 B [m:rr] T
#lo2nT

N =

N = 6.8857

Here observe that the order of the filter should be integer number. In such situation always
nearest higher integer value of *N' is selected to satisfy the specifications. Hence, order of the
filter, N = 6.
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k=2 = py; =+07032 ¢/ M2
= — 0679 + j 0182 and 0.679 - j 0182
k=3 = py =07032 1312
= — 0,679~ j 0182 and 0.679+ j 0182
k=4 = py = 07032 o 15712
_ = — 0497 - j 0497 and 0497 + j 0497
E=§ = ps = 07032 ol 17 2/12

= —0182 - j 0679 and 0182 + j 0679
Thus there are total 12 poles as calculated above. Figure 6.6.5 shows poles plotted in the
s-plane. Observe that all the poles lie on the circle of radius 2. = 07032

Please refer Fig. 6.6.5 on next page.
The poles shown in Fig. 6.6.5 are due to H, (s)-H_(—5)If we want stable filter then

H (s) should have all the poles in lefi half of s-plane. Hence we have to consider the poles
lying in left half of the s-plane. These poles are as follows :

Poles of H, (s) :
—~ 182+ j 0679 = pair |
~ 0497 + j 0497 = pair 2
~ 0679 + j 0182 = pair 3
The above poles are combined as complex conjugate pairs.
Let us name these pole pairs as,
5, = -0182+j0679 and 5, =—0182- j 0679
£, = —0497 + 0497 and 53 =— 0497 — j 0497
53 = —0679+ 0182 and 53 = - 0679 - j (182

To determine system function H, (5) :

Here we have 1o combine complex conjugate poles so that all the coefficients will be real.
For N =6, H, (5) is given as,

&
Hﬂ {5] = ® ni‘ - o
(s-5,) (s -31)-{s-$2] (s-sl)-(:-s3} (:-.53)
Here observe that numerator is ﬂg is made according to the theory of buiterworth filters.

For example for second order butterworth filter, the numerator will be ﬂg. Putting values in
above equation we get,
(07032)°
[(z + 0182 - j 0.679) (5 + 0182 + jO.679) - (5 + 0497 - jO497) (s + 0497 + j0.497).
(s + 0679 - j0182) (s + 0.679 + jO182)]

H,s)=

= 01209
[{J +0182)° +[D.ﬁ?9]|2] : [{.-.- +0497)% + m.w?}*]- [{3 + 06792 + {mszﬁ]
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radius 2. =07032 Twelve poles are located at angular distance of

Fig. 6.6.5 Poles of the function H, (s) H, (-§). These poles are located on circle of



Hidden page



Digital Signal Processing 439 Filter Design

Defining specifications for digital filter :

Order of the filter, N = 2 (given ) cutoff frequency f_ of the digital filter can be obtained
by applying the formula for conversion of continuous to discrete time frequencies.
{i,c.f =-£- Hence,

5

F. 1000
=-Lft=———=0] cles/sample
fe = % =10000 - |

We know that angular frequency of the discrete time signal is given as (w=2nf) i.e., :

@, =2nf.=2nx01=02n radians/sample

This is the angular discrete time cutoff frequency required.

To obtain specifications of equivalent analog filter for Bilinear Transformation :

In this example we are using bilinear transformation. We have cutoff frequency of the
digital filter as @, =02 Now we should determine the equivalent cutoff frequency (£2.) of
analog filter according to bilinear transformation. From equation 6.5.36, the frequency
relationship in bilinear transformation is given as,

Q= Eru::.l'::E
r 2
., = El'ﬂh‘m—':
r

Here “T" is the sampling duration and it is given as T=FL. Here F, =10000 Hz. Hence

L

T=—1_ sec. Putting these values above equation becomes,

10000
Q, = 2 1an [ 02 n:]
1 2
10000
= 6498.4 radians/sec
Thus we have the specifications of analog filter for bilinear transformation as,

1, = 64984 radians/sec and
N =12

Important note :

Here observe that first we obtained digital filter cutoff frequency. Then we obtained analog
filter cutoff frequency according to bilinear transformation frequency relationship. Some times
this procedure is called prewarping. This prewarping removes the warping effect when we
apply bilinear transformation to analog filter system function. Hence the cutoff frequencies are
mapped properly. The same procedure was done in previous example also for impulse
invariance method, even though there is no warping concept. Hence this is the standard
procedure for impulse invariance as well as bilinear transformation.

To obtain poles of H, (5) :
The poles of H, (s)-H, (—5) are given by equation 6.6.9 as,
py =01, eJEN*Et+I’:In,|f1H' k=0L12..N-1
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For 1. = 64984 and N = 2 above equation becomes,
pp = 164984 SO0 40 . (6.637)
With & =0 in above equation we get,
po =+ 64984 o/ 3T/
= = 45050627 + j 45950627 and 4595.0627 - j 4595.0627
With & =1 in equation 6.6.37 we get
p; =t 64084 /374
= = 45950627 - j 45950627 and 45950627 + j 4595.0627
The poles of H, (5) will be the poles lying in left half of the s-plane. i.e.,
s, =—4895+ j 45950627 and
51 = - 4595 - j 4595.0627

Observe that the two poles lying in left half of s-plane are complex conjugate of each
other. Since this is second order filter there are two poles. Note that the poles always occur in
complex conjugate pairs if ‘N’ is even. If ‘N" is odd, then (N =1) poles occur in complex
conjugate pairs and one pole lies on real axis. Hence the coefficients are not imaginary.

To obtain system. function H,(s) :

For butterworth approximation, the system function for second order filter is given as,

o;
(5-5) (a: +.s'r)
Here the order is ‘2" hence numerator is equal to £22. Putting values in above equation we
gel,

H,(s) =

(6498.4)2
(5 + 45950627 — j 4595.0627) (s + 4595.0627 + j 4595.0627)
(6498.4)°
(5 +4595.0627)° +(4595.0627)°

2
- (64984) .. (6.6.38)
s% +91901255 +4223x10°
This is the system function of analog filter.
To obtain H (z) using bilinear transformation :
Next step is to obtain system function of the digital filier i.e. H(z) by applying bilinear
transformation to H_ (). Bilinear transformation is given by equation 6.5.31 as,

2(1-z"
E ==
Tl14+z7!

We have T=L . then above equation becomes,
10000

H (1) =
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10000

_ -1
= 2x10* | 122 ... (6.6.39)
l+z~ ' !

Putting for 5" from above equation in equation 6.6.38 we get H(z) i.e.,
' (6498.4)°

2
-1 -1
|zxm4[1_“‘ 1]] + 9190125 [zxm" ["3 I]}+4123w1l}ﬁ
l+z2” 1+2

On simplifying above equation we get,
| | 0.0676 (1+ 277 +z'1)

1-1143z7" + 04128772

This is the required system function of digital lowpass second order butterworth filter. Tt
can be easily realized in direct form 1 or 1L

Ex.6.6.3 To show that %can be assumed to be ‘1" while solving problems of Mlter design

using bilinear transformation.

Explain this concept with the help of redesigning second order lowpass filter of last
example (i.e. example 6.6.2)

Sol. : Important (What we are doing 7) :
We have already designed a second order lowpass filter of F. =1kHz and F, =10,000 Hz

in previous example. Here we will consider the same filter design but we will assume §=L

Hiz) =

H(z) = e (6.647)

This means we will show that ; cancels out.

Given data :

Order to filter N = 2
Analog filter cutoff frequency F_ = 1000 Hz sampling frequency F, = 10000 Hz

Defining Specifications for digital filter :
Order of the filter, N = 2 (given). Cutoff frequency f. of the digital filter can be obtained

by applying the formula for conversion of continuous to discrete time frequencies [i.e._f =£}
I

Hence,
F. 1000
st =01 les/sample
Te = = 10000 ’ g

i

Hence w, = 2nf, =0lx2x=02n radius/sample
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To obtain specifications of equivalent analog filter for bilinear transformation :

Here we are applying bilinear transformation hence the cutoff frequency of digital signal
i.e. . should be converted to its equivalent value of analog filter i.e. {1, according to bilinear
transformation frequency relationship. This relationship is given by eguation 6.5.36 as,

L8 =—2-m.l':E
r 2

MNow we will consider ?—;L Hence,
ﬂ‘ =E1H&
2

= tan 22% _ 0325

Thus we have specifications of equivalent analog filter according to bilinear transformation
ml

Q, =0325
and N =2
To obtain poles of H(s) :

The pales of H,(s)- H,(~-s) are given by equation 6.6.9 as,

py =10, WU DON k=012..N-1
For N =2and {1 . = 0325 above equation becomes

Py = +0.325 gl (34 20} m/4 . k=01
With k =0 in above equation,

po = 10325 ¢34

= —(0.229+0.229 and 0.229-j(0.229

Similarly with k =1 we get,

py =+0325 &3¢

=-0229-;0.229 and 0.229+ j0.229

For stable filter we have to consider poles lying in left half of s-plane. Hence poles of
H_ (5) will be,
5 =-0229+0.229 and

5, =-0.229-;0229
To determine system function H, (s) :
The system function of second order butterworth lowpass filter is given as,

- Q;
Hyis) = {s —.l';] (s _,3;')

Here numerator is ﬂE since it is second order butterworth filter. Putting the values of
syand 5, in above equation we get,
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Here we want first order function. Hence N =1 therefore above equation will have only
one value at k =0. Le.,

py = +el2¥?

=2e® ==l 4]
Since we want poles in left side of j{) axis for stable filter, the pole of out lowpass filter
s,
'El - _1
Hence the system function of butterworth lowpass filter will be,

1
H = . (615
ar () 5+1 [ )

Here observe that numerator is 1’ since £ =1 i.e. normalized lowpass filter.

To obtain system function of analog highpass filter by frequency transformation :

Now we have to apply frequency transformation on system function of prototype lowpass
filter to obtain system function of highpass filter. The lowpass to highpass transformation is
given by equation 6.7.2 as,
ﬂp nhrp

¥

Here €1, is passband edge frequency of lowpass filter. This is £, which we have
assumed 'l". Hence (1 ;, =1. Hence above transformation will be, '
Qyp

5

We have obtained €2, as 217.963 ie. prewarped cutoff frequency of highpass filter.

Hence,

5 =P

5 —

217.963
—
5
Hence system function of highpass filter is given as,
Hopp (s) = Hyp (s),_ Op
__1 !
Ty +lf,, 207963
X

1

217.963 +1

5
=5 | .. (6.7.6)
5+ 217963
This is the system function of analog highpass filter.
To obtain H (z) by bilinear transformation :

We know that bilinear transformation is given as,

=1
s = 2|12
T 1+z7!




Hidden page



Hidden page



Digital Signal Processing 453 Filter Design

s 129968 x 20381
1 [1'-'.1]33.1 —1299.63]

s? +2.64887 x 10°
=k
13842 5
Hence system function of bandpass filter becomes,

Hagp(s) = Happ(s), o + 264867 x10%
738.42 5

5 +1f,_, 7 + 264887 < 10°
TiBA4l 5

I
2 &
[s + 264887 x 10 ]
S N

_ TIR42 5
s $ 738425 + 2648R7 = 10°
To obtain H (z) by bilinear transformation :

We know that bilinear transformation is given as,
_ o=l
g =212
Tl1+z7!

Putting for 1"=!L_L = ﬁ above equation becomes,

x

.. (6.7.10)

-1
§ o= 2 1-2 \I
[_.'_ ] 1+z7"
2000
&=
= 4000 ‘_1]
l+z2

Putting this value of 5 in equation 6.7.10 we get,

I+z']

2
-1 -l
4000 | 122 || 473842/ 4000 | 123 ||+ 264887 <10
427! 1+ a'l
On simplifying above equation we get,
01367 (1—:.")
1-1237:7" + 0726272

=1
?3&41::40:11["‘* J
Hiz)=

Hiz) =
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For even valoe of M we can write equation 6.8.14 directly as,
)
=-1

L= _
Hiw) = e () ) h{n}rmm[n-%] . (68.18)
p=10

Comparing above equation with the Mpo]ar form of H (w) of equation 6.8.15 we get,

L
2
Magnitude Hw|=2 ¥ h(n}mm[n—%] ... (6.8.19)
n=0
And phase £ H(w) 15 given as,
M-=1
— )| — fi =)
Lu[ 5 ] or  |H(w)
ZHim = Mol e 16.8.200
—Lu[ 2‘- ]+TI for |H{m]-|~= 0

The above equation show that phase 15 piecewise linear. Similar results can be obtained for

antisymmetric unit sample response. Thus for linear phase FIR filter,
hin) =th(M=1=-n) .. (6.8.21)

The above condition should be satisfied.

Linear phase is the most important feature of FIR filters. IIR filters cannot be designed
with linear phase. The linear phase in FIR filters can be obtained if unit sample response
satisfies equation 6.8.21. Many applications need linear phase filtering. For example the speech
related applications require linear phase. Similarly in data transmission applications, linear
phase prevents pulse dispersion and the detection becomes more accurate. Hence whenever
linear phase is desired, FIR filtering is used.

6.8.4 Magnitude Characteristics and Order of FIR Filter

The magnitude specifications of FIR filters are given in different way compared to those
of IIR filters. Fig. 6.8.3 shows the magnitude specifications from which FIR filter is to be

designed.

i3] .
Hw r Passband ripple
1481
S [ — S - N —
1
1 ’/_,-- Transition band
la——— Passhand e Stopband ———
| 1— Stopband ripple
) VAYAYaN
i
0 w, | 2

Fig. 6.8.3 Magnitude specifications used for FIR filter design
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The magnitude response given in above figure can be expressed mathematically as,
1-8, = |H{mH£l+E|l for lzwzaw,

.. (6.8.22)
ﬂilH[m}{EE: for W, SmsT
The approximate empirical formula for order N is given as,
~10ia G by ) =15
v = 10080 (81°82) . (6823)
14Af
I'.IJ_,i _m'p . s
Here A f = 3 15 the transition band.
R

or Af=f,-f,,where w, =2nf, and w, =2nf,.

And length of the filter i.e. M =N.

For the similar magnitude specifications the FIR filters have higher order than IR filters.
This is because FIR filters do not use feedback, hence they need long sequences for h(n) (ie.
higher order) to get sharp cutoff filters. Because of increased number of coefficients, FIR
filters require large time for processing. This processing time can be reduced by using FFT
algorithms,

6.9 FIR Filter Design

In the last section we discussed various characteristics of FIR filters such as stability linear
phase, order of filter etc. Now let us see how FIR filters are designed. There are three methods
mainly used for FIR filter design, They are

(i) FIR filter design using windows

(ii) FIR filter design using frequency sampling or inverse fourier transform and

(iii) Optimal or minimax FIR filter design.

Here we will discuss first two methods in detail.

6.9.1 Design of Linear Phase FIR Filters Using Windows

Let us consider that the digital filter which is to be designed have the frequency response
H; (). This is also called desired frequency response. Let the corresponding unit sample
response (desired) be h; (n). We know that H; (w) is fourier transform of ki, (n). ie.,

Hy(w) = ¥ hgin)e %" . (6.9.1)
LR

And h; (n) can be obtained by taking inverse fourier transform of H; (w). ie.,
=
ha(n) == [ Hy(e) ™" do . (69.2)
In - .

That is the desired unit sample response is obtained from desired frequency response by
above equation.

Generally the unit sample response obtained by equation 6.9.2 15 infinite in duration. Since
we are designing a finite impulse response filter, the length of h; (n) should be made finite. If
"we wani the unit sample response of length '‘M', then h; (n) is truncated to length ‘M'. This is
equivalent to multiplying h, (n) by a window sequence wi{n). This concept can be best
explained by considering a particular type of window sequence. Here we consider rectangular
window.
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_'u._
€ ™3 -Irl‘n{m%]
We (w) =

M
_ ”"”[¥J i&) ... (6.9.10)

The polar form of Wy (w) is given as Wy (w)] e/ < WRI®)  Comparing with above equation
we get magnitude response of rectangular window as,

Fig. 6.9.1 shows the response of rectangular window given by above equation for M =50.

|Wg (w)] = . (69.11)

|WW o)}

£ 345,

~100 . . . ' =
Fig. 6.9.1 Magnitude spectrum of rectangular window for M =50

In the magnitude spectrum of rectangular window given above, observe that there is one
main lobe and many side lobes. As 'M' increases the main lobe becomes narrower. The area
under the side lobes remain same irrespective of changes in ‘M.

From equation 6.9.4 we know that unit sample response of FIR filter is given as,

hin) = hy (n) win)

Here wi(n) represents generalized window function. The frequency response of FIR filter

can be obtained by taking fourier transform of above equation. i.e.,
Hwm) = F.T. {hd- (m)- w{n}}

We know that fourier transform of multiplication of two signals is equal to convolution of
their individual fourier transforms. Then above equation becomes,

Hiw) = H; (w)* W({w) .. (6.9.12)

This equation show that the response of FIR filter is equal to convolution of desired
frequency response with that of window function. Because of convolution, H(w) has the
smoothing effect. The sidelobes of W {w) create undesirable ringing effects in H ().
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Table 6.9.1 Various window functions and' their shapes

Sr.| Name of Time-domain sequence, Shape of window function
No. window win),0=sn=M-1
fent 4
| 7
o8 Rctangua
1. | Rectangular 1 *
[F
[
4] i
a k-1
wini
=1 on
3 Bartlett 2 H_T 08 s
| (triangular) - .
M -1 -
[i} ]
] -1
i) |
1
i1
3. | Blackm 042 - 05 cos —"_ 4 0,08 cos — ™1 o
. | Blackman : w1 1 y
¥ Bgahrrgn
*n [ o
w=in|
1]
) 2nn -
4, | Hamming 034 - 046 cos —— » Hamimeng
qﬂ [TR] =
-y
[ 3
£ | Hanni l[I—-n:‘.-::-.: Eﬂ"] e
ol e 2 M -1 y Hanming
[-F
ol — -
M_l 3 H_l 3 -ﬁ'lillu
o5 ) | ] -
6. | Kaiser J :
; [ [H-l]}
0 oL —_— [ F3
2 ol — -
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sin{n-1)
T(n-1)

for
.Fld {H] =

- for
n

Now let us determine value of t. We know that the filter is symmetric. Hence,

hin) = hiM -1-n)

n#T

=T

We know that h(n)=h,; (n)-w(n). Hence above condition becomes,

hy(n) win) = hy (M ~1-n)w(n)
-&,.1 {n) = -&,,g (M =1-n)
sin(n-1) _ sin(M-=1-n-1)
min-1) tM-1l-n-1)
The above condition is satisfied if,
—-(n-t)=M-1-n-1
-M-1
2
Hence h, (n) of equation 6.9.16 becomes,

)
(-5

T

With M =7 above equation becomes,

[ sin(n -3)
t(n-13)
1

- for
x

L}

'F"-n' (n) =,

hy(n) =4

Table 6.9.2 shows the values of h;(n) calculated according to above equation.

for

n=3

Table 6.9.2 Calculation of h,(n)

n | Value of coefficient h;(n) according to equation 6.9.19

sin(-3)
=3In

0 | hy(0)= = 0101497

sin(=2)
-2n

=014472

1 | by (D=

sin (=1)

3 | by (2)= = 026785

- (6.9.16)

e (6.9.17)

... (6.9.18)

-« (69.19)
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n_| Value of coefficient h, (n) according to equation 6.9.19

hy (3)= = = 031831
LY

sin (1)
"

hy (4)= = 026785

5in(2)

hy (3)= = (4472

hy (6)=

To obtain k(n) by windowing :

Here observe that we have calculated only 7 values of hy(n). However according to
equation 6.9.19 we can calcolate infinite values of h,(n). Since we are using a window of T
values, we will need only seven values of hy(n). ie.,

hir) = hy(n)-win)
We know that for rectangular window,

1 for 0<n=<h
win) = 0

otherwise
Hecice. hm) ={.&d{n] for _usngﬁ
otherwise

Hence from Table 6.9.2, coefficients of FIR filter become,
h(0) = 0.01497
h(l) = 0.14472
h(2) = 0.26785
h(3) = 031831
h(4) = 0.26785
h(3) = 0.14472
h(6) = 0.01497
This is the unit sample response of required FIR filter. Since the filter is symmetric, above
coefficients satisfy the condition of A(n)=h(M —1-n) for M =7 i
hin) = h(6-n)
Le. h(0) = h(6)
hil) = h(3)
h(2) = h(4)
Ex.6.9.2 Design the FIR filter of example 6.9.1 using hanning window.
Sol. : To calculate values of win) :
From Table 6.9.1 observe that hanning window is given by following equation :

w(n) = é—[l-m: .———] .. (6.9.20)
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n hy(n) win) hin)=hy (n)-win)
(Table 6.9.2) (Table 6£.9.3)
4 0.26785 E h(4) = 020089
4
5 0.14472 1 h(5) = 003618
: 4
6 0.01497 0 hi6)=0

In the above table also observe that unit sample response is symmetric and it satisfies the
condition of h(n)=h(M =1-n).

Comments :
In example 6.9.1 we calculated value of t as,
M-1
T =

2

The H;{w) of equation 6.9.13 can also be given as,
Hy(w) = {1-e 2 for MELE e (6.9.21)
0 otherwise

The time shift property of fourier transform states that,
FT.{x(n-k)} =e /" X (w)

This means multiplication by e” 1% 1o the fourier transform is equivalent to delaying the
time domain sequence by k' units. Hence in equation 6.9.21 observe that H,;{w) has magnitude

M-1
M-1

—jﬂﬂ [
of 1 for |@|<w,. And multiplication by e 2/ indicates delaying hy(n) by —

samples. This is clear from equation 6.9.18 also.
Hence we can write magnitude response |H,;(w)| and phase £ H4(w) from equation 6.9.21

a5,
) for |o|=mw,
[Ha (@) {u otherwise

and £ Hy(w) =—m[%]

Fig. 6.9.4 shows the magnitude and phase response of this desired filter.

Please refer Fig. 6.9.4 (a) and (b) on next page.

The above figure shows that H ;{w) represents ideal lowpass filter. Thus in example 6.9.1
we have designed ideal lowpass filter using rectangular window. But because of windowing
(i.e. truncation of hy(n)), the frequency response of FIR filter i.e. H(w) is no more ideal.

Important :

Here we started from desired frequency response H,(w). Then we obtained h,(n) by
inverse fourier transform of H, (w). Then h(n) is obtained by windowing of h,(n). This is
also called as FIR filter design using inverse fourier trangform, since hy(n) is obtained by
inverse fourier transform. But windowing is more commeonly used name for this method.
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Hence equation 6.9.26 becomes,
H{M _k} E;I: H[H—I]EM = H{M "'k]' f—_,lzu'l in M
Normally |H|ZM-& | = !H{k}l{ . this can be easily verified from theory of DFT. This
relation is based on the fact that magnitude of DFT from 0 to n is same as that from = to 2n
Hence we can write above term as,

H(M —k) e ™ ENM g gy o 2mdmiu .. (6927
The term H(k) g dImbniM complex conjugate of H(k) e/ 3nkniM  Hence
H(M-k) ¢ 2an (M-R)/M o complex conjugate of H (L) ¢’ *=*/M je
H(M-k) =H (k) .. (6.9.28)
Using this relation of complex conjugate terms, the egquation 6.9.25 is simplified to,
him) =+ LH@©0)+2 i Re [H (k) /7214 ] . (6.9.29)
M | kel
Y= ifMisodd
Here p=] 2 .. (6.9.30)
M

— =1 if M iseven

This equation is oblained by combining complex conjugate terms in equation 6.9.25. The
above equation can be used to compute coefficients of FIR filter.

6.9.3 Design of Optimum Equiripple Linear Phase FIR Filters

Earlier we have discussed windows and frequency sampling methods for designing FIR
filters. In those methods the critical frequencies w, and w, cannot be controlled precisely. The
method discussed in this section is based on the chebyshev approximation. The weighted
approximation error between desired frequency response and actual frequency response is
spread evenly across the”passband and stopband to minimize the maximum error. Ripples are
introduced in the response of filter in passband and stopband.

Let H,{w) represents the real valued frequency response characteristic. From Fig. 5.9.3 we
can write the frequency response specifications for lowpass filter as,

-8, £ H, (w) £1+5, |lw[£w, .. 16.9.31)

and’ -bs £ H (W) €84 || w, .. (6.9.32)

Now depending upon the symmetric/antisymmetric and odd/even length, there are four

cases possible. Table 6.9.5 shows the relations for M, (w) and hin) for these four cases. In the
table H {w) is expressed as,

H, (w) = M) M) . 6.9.33)
Table 9.6.5 H, (w) = @{w) P{w) and corresponding h(n) for linear phase FIR filters
Filter type Kw) P(w) Relationship of hik) with
a(k), B(k), &k)and d(k)
I.{ h(n) = h(M=l-n) | 1 LM-1) j{M-l} §0
M odd iﬂ(“m“ﬂ alk) = 2
b0 2 ﬂ-k}kﬂu, ...... M-l
2 2
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2. I'.I{II} = ]'I{M-]-ﬂ} CDEE E_j E{ﬂ] = 1'1-:"::].}
M even 2 t E{E}ﬂﬂﬁm 2 y
k=0 b(k) = 2b(k) = B(k =1), k=L2,..... 52
b(k) = zh[ﬂ —k} k=12..4
2 2
3.| hin) = -h(M=1-n)| sinw | M=} ke =1) = E(k +1) = 2e(k) rcpc M3
M odd iﬁﬂmm& | 2
k=0 &0 +2E2) =)
M -1 M -1
ky=2H =—— -k | k=L2 .. ——
c(k) ﬂ'[ 5 ] L2 3
4.| b() = -h(M-1-m)| o | ¥, dk-D-dik)=2d0k) 2<k<™M
M even 2 t (k) cosmk 2
k=0 E{U}-%E{l}nﬂll
M M
k)y=2h — -k |, k=12, ..—
- k) kmra
In the above table observe that F{w) has the common form,
Plw) = iu{i} coswk . (6,9.34)

k=0

Here a(k) represents parameters of the filter which are related to unit sample response
hin) as shown in Table 6.9.5. The upper limit L' in the summation of above equation depends
npon various cases given in Table 6.9.5. Let us denote real valued desired frequency response
by H, (w). The value of H,. (w) will be simple unity in the passband and zero in the
stopband. Let us denote the weighting function on approximation error be W{w). It can be
defined as,

& :
W) = |3 2" passband . (69.35)
1 winstopband
The weighted approximation error is given as,
E(w) = Ww)[Hg, (0) - H, (w)] w (6.9.36)

The relative size of errors is decided by function Wiw). Since H,(w) = {w) Pla) above
equation call be written as,
E{w) = Ww) [H () - HNw) Pw)]

- H g (@)
= Wiw) Qw) [—E{’-ﬂ] Hﬁ}}]

Hd.r ()

} then the above equation becomes,
i}

Here let W(w) = Wiw) Q) and H 4, (m) =
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Let the cascade configuration shown in above figure be excited by unit sample sequence

B(n). The response of H ;(z} 1o &in}is hy(n) as expected and & 4(n) becomes an input to -E{!—-i

Z
as shown in above figure. The output of this inverse filter is shown as y(n). Actually if H;(z)
and Hiz) are same. then y{n)=4&(n} This is because filtering and inverse filtering in cascade
has no effect and output s same as input. Note that H;(z) is the desired filter and H(z) is the

approximation of H,;(z) obtained through design process. From equation (6.10.1), };.'L will be,

(z)
|+ iﬂ:t E_k

| k=1

Hiz b
The input to this filter is b (n). hence its output yin} is given as,
N

boyim) = hy(m)+ Y aghy(n-k)
k=]

[ N
_}-‘fil_} - L\‘hil‘.ﬂ}-l- Z g hdfﬂ - k:]:| - {ﬁ-lﬂ'i}
by kw1

It is desired that vin)=5&(n). We know that 3(0) = 1, hence W0) =1 With n=0, above
equation becomes,

W =EL'ﬁdlﬂ}

4]
I

| = hy(0)-since y(0)=1
by *

Hence, by = hy(0) .. (6.10.3)
In Fig. 6.10.1 observe that ‘error’ is obtained by subtraction of wn) and 8(n). i.e.
Ermor = yin)-8(n)

For n>0, &(n) = 0 and Error =y(n). Let the sum of squares of the ermor sequence be
denoted by & i.e.,

e =3 yi(n) . (6.10.4)
mal

Putting the value of ¥ a) from equation (6.10.2) above,

2
£ = z ) }-‘;I-—‘!'ﬁd-‘ﬂ}'f iﬂihd{" —-H”

&= l.l'|_ k=1

Since &y = hy(0), above equation becomes,

p=

2 hgin)+ Y achin-=k)

=1L J._l

g =M=ty - — .. (6.10.5)
O

42
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Fig. 6.11.1 shows the poles placement.

Im{z]
"
" Fﬂ!lmlﬁ
L it
cirche
Tty
W= Taros w =

= Relz]
Two zeros at the
ofiginia z=0

- Conjugate pole
ltn}t--i-

Fig. 6.11.1 Poles-zero placement for bandpass filter with frequency of g

In the above Fig. 6.11.1 observe that one pole is placed at m=—'§ (i.e. z=0+ j). The filter

will be realizable if all the poles and zeros occur in complex conjugate pairs. Hence we should

place conjugate pole at z=0-j iLe. at u:-=-7fL.JH=m:e this pole is placed at m=—%

3
[i.c,mz%nj To make the system physically realizable, the number of poles and zeros should

be equal. Since we have placed two poles, we should also place two zeros. Normally such
zeros are placed at the origin i.e. z =0 These zeros do not affect the frequency response since
they are placed at z =1 Thus we have poles and zeros of the bandpass filter as follows.

poles al z=0+; and 0~

zeros at z=0 (Two zeros)

To determine system function :

Now the system function can be obtained from the poles and zeros as follows :

(z-2) (z-22)

Hiz) = -
(:-Pl}(z—m]
Here py =0+7, F;IU'J:
:i:-::U
Hiz _ =00}
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The above system function can also be written as,

H(z) = . (6.11.1)

]+z_1

This is the system function of digital filter. It can be implemented by direct form.
To determine frequency response of H (z) :
We know that frequency response of H (z) can be obtained by putting z = el e,

Hi{w) = H{E‘L_‘jw
1

-m from equation 6.11.1
Let us rearrange this equation as follows :
H () = S
P L L e

ﬂlJ|l?|
Eju+g—jm
Hemuueﬁ+r"”=2msﬂ.ﬂem,
e
2eosw Qeosw

Hence magnitude response of H (w) becomes,

‘ 1 \
|H (@) = -

Table 6.11.1 below shows |H (w)| calculated for various values of w
Table 6.11.1 Magnitude response of H (») calculated at few values of »

(] 1
|H[[ﬂ'}| = }ﬁ
1

Hw) = el ®

D [
2
n 0.577
i
= !
6 3
n_x o=
6 2
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Im[z] .
Fﬂﬂ&tm=§|-ﬂ.2=ﬂ+i

Zeroatwm = +11’i5 _‘_..-azamalm-g-%
i.e. 25 = -0.250 + | 0.966 i z,=0259+)0.966
Unit circle
i =1 I w=0 - Relz]
0
Two poles stz =0
Conjugate zero n ™~ Conjugate zero
i " n b1
ﬂlm=—{5+ﬁ} ﬂln],:_[i_ﬁ:
ie z," = - 0.250 - 0.966 z," = 0.259 - 0.966

Pole atw =~ 5 le.z=0-]
Fig. 6.11.3 Pole zero placement for sharp passband

In the above figure observe that we have put two zeros at m=gtf%. These zeros will

attenuate frequencies near m:%. Since poles and zero should have their complex conjugates,

we have (o put two 2eros at o=- [g tg] Thus there are total four zeros. To make poles and

zeros equal for realizable system, we have to place two poles at origin ie. at z=0 Thus the
poles and zeros of the system are as follows :

Poles pp =pz=0
py =0+j .  p3=0-j
Zeros : 7y = 0259+ 0966 ,z; = 0.259 - j 0966

2, = -0.259+ /0966 ,z3 = -0.259 - j 0966
System function for this new pole-zero placement can be obtained as,
_ (z-21) ( —zl) (z-22) (z—zg)
(z-p1) (z-P2) (z-P3) ( —PE)

Putting for poles and zeros in above equation we get,
Hml{z —0.259 — j 0.966) (z — 0. 259 + j 0.966) (z + 0.259 — j 0.966) (z + 0.259 + j 0.966)

(z=0)(z=W(z=j)z+J)

H(z)

2t e1mzt 41
- 2

t +z
1+ 01732 z'z -H:'4
=2

Hz) =
l+z
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This is the system function of the required sharp bandpass filter. The frequency response
can be obtained by evaluating at z =/ ™,

Important note :

Poles are normally placed sightly inside the unmit circle. We know that digital filters are
unstable if poles are outside the unit circle. Hence to avoid this problem poles are placed
inside the unit circle. This do not affect the frequency response, since it depends on the angle
of the pole. Zeros can be placed anywhere since they do not affect stability of the filters.

Ex.6.11.2 Design a lowpass filter to have cutoff frequency of 250 H: using pole zero
combination. The sampling frequency is 2000 Hz
Sol. : To determine frequency specifications :
Cutoff frequency of lowpass filier, F, =250 Hz
Sampling frequency, F, = 2000 Hz
Hence comresponding discrete frequencies will be,

Pole-zero placement :
We want the frequencies above E to be blocked. Hence we will place one zeéro at m=£.

Then complex conjugate zero will occur at ﬁ:=-—£. This zero at m=§ will attenuate
frequencies near m=£. Hence we 1m-".ill put one pole at m=£—5% to reduce attenuation of
4

frequences of w< w,.. Iis complex conjugate pole will be present at w= _[E-ﬁ] Fig. 6.11.4

shows the pole zero placement.

(2] .
@z X Imntuiil.u. 18 4
Unit circle N - j].n. 2, = 0.707 + ] 0.707
Pole at 0.9¢'( 7 38/
La. p; = 0.680 + 0.578
T w=0 » Refz]

Conjugate pole Hﬂ.ﬁu_“i' di‘
Le. p,* = 0.689 - 0.578

"
G lws-% Conjugate zero at 1a 4
Le.z," = 0.707 - 0.707

Fig. 6.11.4 Pole-zero placement for a lowpass filter



Hidden page



Digital Signal Processing 486 Filter Design
Sr. |Parameter or characteristic IIR filters FIR filters
No.
4. | Phase characteristic Nonlinear phase response. | Linear phase response. (for
symmetric h(n)).
3. | Stability of the filer These filters are to be These are inherently stable
designed for stability. filters.
6. | Number of multuplications | Less. More.
required
7. | Complexity of More. Less.
implementation
8. | Memory requirement Less memory is required. More memory is required.
9. | Can simulate prototype Yes. No.
analog filters
10. | Order of filter for similar | Requires lower order. Requires higher order.
specifications
11. | Availability of design Good. Very good,
softwares
12. | Design procedure Complicated. Less complicated.
13. | Processing time Less time is required. More time is reguired.
14, | Design methods (1) Bilinear transform. (i) Windowing.
(ii) Impulse invariance. (ii) Frequency sampling.
15. | Applications Can be used where sharp Used where linear phase
cutoff characteristics with characteristic is essential.
minimum order are
required,

The selection between FIR and IIR filter is based on following criteria :

(i) If linear phase requirement is critical then FIR filters are used.
(ii) If sharp cutoff characteristic with minimum order is required, then IR filters are

required.

Thus IIR filters are used in maximum number of applications when phase characteristic is
not very important. For the design of FIR as well as TIR filters good number of standard
softwares are available,

Till now we have not discussed about finite wordlength effects. [IR and FIR filters can be
compared on the basis of these effects also. FIR filters are least affected due to finite
wordlength effects, whereas IIR filters are affected more,

6.13 Butterworth Filter Design Ustng_ Bilinear Transformation

In this section we will see about how to compute the system function of a butterworth
using bilinear transformation.
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6.13.1 Design Steps

Here we will summarize the steps used for design of butterworth filter uwsing bilinear
transformation.

Assumption : Assume that specifications of digital filter are given. These specifications
are passband and stopband attenuations ie. Apand A; ; passband and stopband edge
frequencies i.e. mp and wyg.

Step 1 : Redefine the specifications for equivalent analog filter by using bilinear frequency
relationship i.e.,

£} = =tan

=3 | ra
3 | &

Hm%c&nbnassunwdmbnl.

Step 2 : Calculate the order 'N' of the filter by using following relation.

S )

ar N =

Step 3 : Determine cutoff frequency of equivalent analog filter ie. £2,. It is given by
following bilinear relationship.:

[ 1]
ﬂc = fan ==

Here note that we have assumed %sl,

Step 4 : Calculate poles of H, (5) by the following equation,
pe =02, gJ (N + ks 1}m/IN k=012..N-1
Step 5 : Organize the poles p, as complex conjugate pairs. i.e.,
’ L amis;, 53 :4.1‘u|:l..'.';1 5y md.t;,-..-
Step 6 : Compute system function of analog filter by following equation
Q;

(s-51) (s us;){:—sﬂ( -5;) .....

Step 7 : System function of digital filter by bilinear transformation can be obtained as,

Hiz) = H,,E.rﬂ’_ 1-z"1
1

H,(s) =

b+z
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=1

Putting s =—— in equation 6.13.4 we get,
142~
nl
H,(z) = 3 :-
1-z"" -z
—=— | +2pReal | —— +(pﬂeal} +(plmag}
T
1+z2 14771

_ o2 1y
(1-—2")1+2pRea1(l—z )(I+* ) [pﬁeal) +(plmag) ](l+z.")2

The above equation can be simplified as follows :
bog +bg 27 +bgy 2

-2

- B, - . (6.13.5)
Ggg @ 2 +agy 2
2
Here B, = 1 - - . (6.13.6)
1+2pReal +(pReal)” +(pImag)
bm =]
by =2 .. (6.13.7T)
bu.z =]
gy = 1
00 3 3 'I
1|:{pReal) +(pImag) ]-
ap = 2
1+2 pReal+[pREal]! +{PIMGJ1 L. (6.13.8)

1-2pReal a|~|‘:|;:|R1::alj‘|2 + (pImaq}z

-ﬂm=

1+2 pﬂea1+{pﬂeal)l +(pImag}: ]

Similarly other second order sections of H_(s) of equation 6.13.2 can be converted to
equivalent digital filter section. Le.,

- =2 - -2
H{;]: . b_l:ﬂ +bg|.= ! ‘I'-b'ﬂ_j_-c HB: El_q +b|_] F l+b|;_E . {ﬁ.l?.g}
agy +ap 2 +ag 27 ag +ay 2”7 +ap 27
N2 =1 -2
= 11 5, “RZPMI_TIE - gor oven N . (613.10)
k=1 dpp ta & +ag i

Now let us consider H,(s) with odd N. It will contain [%] second order sections and
one first order section. Then equation 6.13.2 pmhe wrillen as,
H.(s)= a ” Q; a..nSe_
T ) (5-s) Ges) (-s) e

.. (6.13.11)
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bﬂ =]

by = -1 Reall
(Realz)® +(1magz)’ : . (615.8)
a; = —2 RealP

-
Bad
|}

ay = I:R-E.!LIPP:Ij - [ImaqP]E

Thus the coefficients for two poles and two zeros are obtained. This logic can be extended
for higher number of poles and zeros.

6.15.2 C Program for Filter Design Using Pole-Zero Combination

Mow let us consider the C program based on logic discussed in previous subsection. The
program is presented below :

f/file name : notch.cpp

ftom——msc=e===== Filter design using pole zero combinatlion ========== *f
/o

£/ This program accepts the loaction of pole and zero

£ and gives the coefficients of difference egquation.

i It alao shows the magnitude and phase plot of the filter,

'y

' The format of the difference egquation is,

ry yin) = —[al*yin-1)#+a2*y (n-2)] + bO0*x(n)+bl*xin=1}+b2*x(n=2)

i/

fY  Inputs : hngular position of pole and zero

£ ag position = r &®j {Theta)

£ Outputs ¢+ 1. Walues of coefficients,i.e. al,a2,bl,bl & b2

£ 2. Magnitude and phase transfer function

£ plot Hie*iw) for v = 0 ta pi.

f/

// Assumptions :1. This program is written for second order filter.

' It can be used for lowpass, highpass, bandpass,

£ natch any type of pole zero combination.

£ 2. The program accepts location of one pole and one

iy zero and their conjugates are considered internally
iy see axplanation for details)

F e -

finclude<stdio.h>

finclude<canio.h>

tinclude<math.h>

ginclude<graphics.h>

vold maini)

[
float rZ,Thetaf,rP, ThetaP;
float RealZ, Imag?,RealP, ImagP;
float RealMum, Imaglum, RealDen, ImagDen;
float mag[640] ,phase[e40] ,,pl,w, wStep;
float static-a(l0],b(10], yMag, yFhaae;
int Hr H! i-r Hi fﬂﬂ, ql'ﬂ-f

cleser ()i

printf(*\veieFilter design using using pole zere combination®):

printf{*\n\nEnter the angular position of pole and zero "
"‘“nthe program takes their conjugates internally *
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Filter design using using pole zero combination

Enter the angular position of pole and zero
the program takes their conjugates internally

pole or zero = r e*j(Theta)
location of zero, r Theta : OO0
1 1.

location of pole, r© Theta : 3707963

The coefficients of the filter are as follows., ..
BIO] = 1.000000

bB{1l] = -0.000000 afl] = -0.000000

b{2] = 0.000000 a(2] = 1.000000

press any key to see magnitude/phase response

..-"""Iln-ln.-..._-_

\

\

':"f-.% Magnitude plot

.

-
-i'.-'

Phase plot

Fig. 6.15.1 Magnitude and phase plot of notch
bandpass filter obtained by C program

From the above results it is clear that,

by =1 by =by =0 and
i!lz = 1, EI =ﬂ
Hence the system function of equation 6.15.6 becomes,
1
H(z) = =
l+z2”

This same as that we have obtained in example 6.11.1 and given by equation 6.11.1.
Similarly the magnitude response computed by program as given above in Fig. 6.15.1 is
similar to that of Fig. 6.11.2.

Note : This program can be used to calculate coefficients of any type of filter which has
two poles and two zeros. The frequency response of the filter can be shaped by placement of
poles and zeros. Thus it is also possible to have, lowpass, highpass, bandpass, bandstop, etc
types of responses from this program. The only requirement that poles and zeros should be in
complex conjugate pairs. This logic can be extended for higher number of poles and zeros.
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3
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3.
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3
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7.

.

9.

Com Pu.ttr Exercise

The C program for butterworth filter design using bilinear transformation is given in
section 6.13. Modify this program so that it should accept passband and stopband edge
frequencies and attenuations, and compute coefficients accordingly.

The C program for FIR filter design using windows is presented in section 6.14. Add
Blackmann window to this program.

Modify the C program presented in section 6.15 for higher number of poles and zeros.
From this program design a notch bandstop filter to remove 50 Hz noise from the
signal which is sampled at 200 Hz.

Theory Questions

What is the difference between analog filters and digital filters, compare them.
What do you understand by all pass filter 7 Where it is used ?
Determine the unit sample response of the ideal lowpass filter. Why it is not

_realizable?

Explain the design of [IR filters by approximation of darivatives.

Explain the method of IIR filter design by impulse invariance. .

Explain the Bilinear transform method of IIR filter design. What is warping effect 7
Explain poles and zeros mapping procedure clearly.

What are the advantages of FIR filter 7 Discuss the design steps of FIR filters using
windows.

Explain in detail the design of FIR filters using rectangular window.

Explain FIR filter design using frequency sampling technigue.

10. Explain the design of digital filters using pole-zero placement.

11. Explain the design method of optimum equiripple linear phase FIR filters
12. Explain the design of filters of filters using least squares method.

13. Write short notes on the following :

(i) Various smoothing window functions

(ii) Comparison of FIR and IIR filters

(iii) Gibbs phenomenon

{iv) Frequency transformation

(v) Digital filter design using butterworth approximation
(vi) Realization forms of digital filters

(vii) FIR differentiators

(viii) Hilbert transformers

Unsolved Examples
Design a highpass FIR filter having cutoff frequency w,. =2 radians/sample and length
of 7. Use rectangular smoothing window. Ans. : h(0) =h (6) =0.02965
h (1) =h(5)=012045
h(2)=h(4)=-02894
h(3)=036338
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Chapter 7
HAROWARE ARGHITEGTURE OF DSP (DSP PROGESSORS)

7.1 Introduction

In this chapter we will briefly introduce DSP processor architecture and their features. In
the previous chapters we have implemented various DSP algorithms such as convelution, FFT,
filtering, correlation etc in C. There are few things common to all DSP algorithms such as,

(i} Processing on amays is involved.

(ii) Majority of operations are multiply and accumulate.

(iti) Linear and circular shifting of arrays is required.

These operations require large time when they are implemented on general purpose
processors. This is because the hardware of general purpose processors is not optimized to
perform such operations fast. Hence general purpose processors are nol suitable for DSP

operations. Particularly, real time DSP operations are very difficult on general purpose
processors. Hence DSP processors having archilecture suitable for DSP operations are

developed.
7.2 Desirable Features of DSP Processors

Now let us see what features DSP processors should have so that DSP operations will be
performed fast.
(iy DSP processors should have multiple registers so that data (i.e. arrays) exchange
from register to register is fast.

(if) DSP operations require multiple operands simultanecusly. Hence DSP processor
should have multiple operand fetch capacity.

{(iii) DSP processors should have circular buffers to support circular shift operations.
(ivy The DSP processor should be able to perform multiply and accumulate operations

very fast.

(v) DSP processors should have multiple pointers to support multiple operands, jumps
and shifts.

(vi) Since DSP processors can be used with general processors, they should have muld
processing ability.

(vil) To support DSP operations fast, the DSP processors should have on chip memory.
(viii) For real time applications interrupts and timers are required. Hence DSP processors
should have powerful interrupt structure and timers.
The architectures of DSP processors are designed to have these features. The DSP
processors from Analog Devices, Texas Instruments, Motorola etc are commonly used.

(511)
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7.3 Types of Architectures

There are three types of standard architectures for microprocessors. They are as follows :

(i) Yon-Neumann Architecture :

General purpose processors normally have this type of architecture. The architecture shares
same memory for program and data. The processors perform instruction fetch, decode and
execule operations sequentially. In such architecture, the speed can be increased by pipelining.
This type of architecture contains common interval address and data bus, ALU, accumulator,

/O devices and common memory for program and data. This type of architecture is not
suitable for DSP processors.

(ii) Harvard Architecture :

The harvard architecture has separate memories for program and data. There are also
separate, address and data buses for program and data. Because of these separate on chip
memories and internal buses, the speed of execution in harvard architecture is high.

-~ Program For storing programs
S— Memoary

PMA bus
PMD bus

Digital
Prmr:::

Data
For storing data Memory -

Fig. 7.3.1 Harvard architecture showing separate program and data memories

In the above figure observe that there is Program Memory Address (PMA) bus and
Program Memory Data (PMD) bus separate for program memory. Similarly there is separate
Data Memory Data (DMD) bus and Data Memory Address (DMA) bus for data memory. This
is all on chip. The digital signal processor includes vanious registers, address generators, ALUs
elc.

The harvard achitecture has multiple bus structure and separate memories. Hence its speed
is increased. It is possible to fetch next instruction when current instruction is executed. That
is, the fetch, decode and execute operations are done parallely.

(iii) Modified Harvard Architecture :

In this architecture data memory can be shared by data as well as programs. Fig. 7.3.2
illustrates this concept.

OMD bus
DMA, bus
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